Chứng minh rằng:
\(\alpha,999...=\alpha+1\) với mọi \(\alpha\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Trên nửa đường tròn đơn vị, lấy điểm M sao cho \(\widehat {xOM} = \alpha \)
Gọi H, K lần lượt là các hình chiếu vuông góc của M trên Ox, Oy.
Ta có: tam giác vuông OHM vuông tại H và \(\alpha = \widehat {xOM}\)
Do đó: \(\sin \alpha = \frac{{MH}}{{OM}} = MH;\;\cos \alpha = \frac{{OH}}{{OM}} = OH.\)
\( \Rightarrow {\cos ^2}\alpha + {\sin ^2}\alpha = O{H^2} + M{H^2} = O{M^2} = 1\)
b) Ta có:
\(\begin{array}{l}\;\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }};\;\cot \alpha = \frac{{\cos \alpha }}{{\sin \alpha }}.\\ \Rightarrow \;\tan \alpha .\cot \alpha = \frac{{\sin \alpha }}{{\cos \alpha }}.\frac{{\cos \alpha }}{{\sin \alpha }} = 1\end{array}\)
c) Với \(\alpha \ne {90^o}\) ta có:
\(\begin{array}{l}\;\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }};\;\\ \Rightarrow \;1 + {\tan ^2}\alpha = 1 + \frac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }} = \frac{{{{\sin }^2}\alpha + {{\cos }^2}\alpha }}{{{{\cos }^2}\alpha }} = \frac{1}{{{{\cos }^2}\alpha }}\;\end{array}\)
d) Ta có:
\(\begin{array}{l}\cot \alpha = \frac{{\cos \alpha }}{{\sin \alpha }};\;\\ \Rightarrow \;1 + {\cot ^2}\alpha = 1 + \frac{{{{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} = \frac{{{{\sin }^2}\alpha + {{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} = \frac{1}{{{{\sin }^2}\alpha }}\;\end{array}\)
Coi BPT là bậc 2 với tham số \(sina;cosa\)
Đặt \(f\left(x\right)=\left(1+sin^2a\right)x^2-2\left(sina+cosa\right)x+1+cos^2a\)
Ta có: \(1+sin^2a>0;\forall a\)
\(\Delta'=\left(sina+cosa\right)^2-\left(1+sin^2a\right)\left(1+cos^2a\right)\)
\(=sin^2a+cos^2a+2sina.cosa-1-sin^2a-cos^2a-sin^2a.cos^2a\)
\(=-sin^2a.cos^2a+2sina.cosa-1\)
\(=-\left(sina.cosa-1\right)^2=-\left(\frac{1}{2}sin2a-1\right)^2\)
\(=-\left(\frac{sin2a-2}{2}\right)^2\)
Do \(sin2a-2< 0;\forall a\Rightarrow\left(\frac{sin2a-2}{2}\right)^2>0;\forall a\)
\(\Rightarrow\Delta'< 0;\forall a\Rightarrow f\left(x\right)>0\) với mọi x và a
Ta có:
\(\dfrac{sin\alpha+tan\alpha}{cos\alpha+cot\alpha}=\dfrac{sin\alpha+\dfrac{sin\alpha}{cos\alpha}}{cos\alpha+\dfrac{cos\alpha}{sin\alpha}}\)\(=\dfrac{sin\alpha cos\alpha+sin\alpha}{cos\alpha}:\dfrac{cos\alpha sin\alpha+cos\alpha}{sin\alpha}\)
\(=\dfrac{sin\alpha cos\alpha+sin\alpha}{cos\alpha}.\dfrac{sin\alpha}{cos\alpha sin\alpha+cos\alpha}\)
\(=\dfrac{sin^2\alpha\left(cos\alpha+1\right)}{cos^2\alpha\left(sin\alpha+1\right)}>0\) nếu biểu thức có nghĩa.
a) ta có : \(A=\left(sin\alpha+cos\alpha\right)^2+\left(sin\alpha-cos\alpha\right)^2\)
\(\Leftrightarrow A=sin^2\alpha+2sin\alpha.cos\alpha+cos^2\alpha+sin^2\alpha-2sin\alpha.cos\alpha+cos^2\alpha\)
\(\Leftrightarrow A=2\left(sin^2\alpha+cos^2\alpha\right)=2.1=2\) (không phụ thuộc vào \(\alpha\))
\(\Rightarrow\left(đpcm\right)\)
\(B=sin^6\alpha+cos^6\alpha+3sin^2\alpha.cos^2\alpha\)
\(\Leftrightarrow B=\left(sin^2\alpha+cos^2\alpha\right)^3-3sin^2\alpha.cos^2\alpha\left(sin^2\alpha+cos^2\alpha\right)+3sin^2\alpha.cos^2\alpha\)
\(\Leftrightarrow B=\left(sin^2\alpha+cos^2\alpha\right)^3-3sin^2\alpha.cos^2\alpha+3sin^2\alpha.cos^2\alpha\)
\(\Leftrightarrow B=\left(sin^2\alpha+cos^2\alpha\right)^3=1^3=1\) (không phụ thuộc vào \(\alpha\) ) \(\Rightarrow\left(đpcm\right)\)
a/A = sin2 + 2. sin.cos + cos2 + sin2 -2cos.sin + cos2= 2
Tớ không biết ghi anpha nên ..
Mình viết luôn là sin với cos, bạn tự cho thêm \(\alpha\) nhé.
VT= \(\sin^2.\dfrac{\sin}{\cos}+\cos^2.\dfrac{\cos}{\sin}+2\sin\cos\)
= \(\dfrac{\sin^3}{\cos}+\dfrac{\cos^3}{\sin}+2\sin\cos\)
= \(\dfrac{\sin^4+\cos^4+2\sin^2.\cos^2}{\cos.\sin}\)
= \(\dfrac{\left(\sin^2+\cos^2\right)^2}{\cos.\sin}\)
= \(\dfrac{1}{\sin.\cos}\)(1)
VP = \(\dfrac{\sin}{\cos}+\dfrac{\cos}{\sin}\)
= \(\dfrac{\sin^2+\cos^2}{\cos.\sin}\)
= \(\dfrac{1}{\cos.\sin}\)(2)
từ (1) và (2) => VT=VP (đpcm)
Chúc bạn học tốt!