cho hình chóp S.ABC có đáy là tam giác vuông cân tại C, cạnh huyền có độ dài 8a. Gọi M là trung điểm BC, H là trung điểm AM . Biết SH vuông góc (ABC) và SB=25a/2. Tính d(B; SAM)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tính \(V_{S.ABM}\)
Tam giác ABC cân tại A , SBC cân tại S \(\Rightarrow AM\perp BC;SM\perp BC\) tại M
Vì mp(SBC) vuông góc với mặt đáy suy ra SM vuông góc với mặt đáy
Góc giữa SB và mặt đáy là góc SBM=300
\(\Rightarrow SM=BMtan.\widehat{SBM}=\frac{a}{2}.tan30^0=\frac{a}{2\sqrt{3}}\)
\(\Rightarrow V_{S.ABM}=\frac{1}{3}.SM.S_{ABM}=\frac{1}{3}.\frac{a}{2\sqrt{3}}.\frac{1}{2}.\frac{a}{2}.\frac{a\sqrt{3}}{2}=\frac{a^3}{48}\)
b) Tính k/c SB và AM
Kẻ MH vuông góc với SB tại H
Dễ dàng chứng minh MH là đoạn vuông góc chung giữa SB và AM
Vậy khảong cách giữa SB và AM bằng đoạn MH và bằng \(\frac{BM}{cos.\widehat{HBM}}=\frac{\frac{a}{2}}{cos30^0}=\frac{a}{\sqrt{3}}\)
Chọn D.
Lời giải.
Ta có
Từ (1) và (2)
Gọi I là trung điểm AC
Mặt khác
Từ (3) và (4)
nên góc giữa hai mặt phẳng (SAC) và (SAB) bằng góc giữa hai đường thẳng HK và HC.
Xét tam giác CHK vuông tại K, có
Đáp án B
Kẻ đường cao SH trong Δ S A B ⇒ A H ⊥ A B C .
Δ S A B đều ⇒ A H = 2. a 3 2 = a 3
Diện tích tam giác: A B C = 1 2 . 2 a 2 = 2 a 2
⇒ V S . A B C = 1 3 S H . d t A B C = 1 3 a 3 .2 a 2 = 2 a 3 3 3
Ta có: V S . A M N V S . A B C = S M S B . S N S C = 1 2 . 1 3 = 1 6
⇒ V S . A M N = V S . A B C 6 = 2 a 3 3 3.6 = a 3 3 9
Chọn C.
- Gọi H là trung điểm của BC. Suy ra:
- Ta có:
- Do H là hình chiếu của S lên mp(ABC) nên góc giữa đường thẳng SA và mp (ABC) là góc
- Xét tam giác vuông SHA có: