K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2016

Ta có: AC2 = AB2 + BC2 - 2AB.BC.cos(ABC) 
<=> 142 = 162 + BC2 -2.16.BC.cos(60) 
<=> BC2 - 16BC + 60 = 0 
<=> BC = 6 hoặc BC = 10 
Thoe bất đẳng thức tam giác thì car2 trường hợp trên đều thỏa mãn
Vậy BC = 6 hoặc BC = 10

3 tháng 3 2017

Kẻ đường cao AH

Xét tam giác vuông ABH, ta có:

Áp dụng định lý Py-ta-go vào tam giác vuông AHC ta có:

Suy ra HC = 2.

Vậy BC = CH + HB = 2 + 8 = 10

Đáp án cần chọn là: A

Bài 14: Cho tam giác ABC có BC = 16 cm, AB = 20 cm, AC = 12 cm.a/ Chứng minh tam giác ABC là tam giác vuông.                                                   (1,5 điểm)   b/ Tính sin A, t B và số đo góc B, góc A.                                                                 (2 điểm)  c/ Vẽ đường cao CH. Tính các độ dài CH , BH, HA.                                              (1,5 điểm)   d/ Vẽ đường phân giác CD của ABC. Tính độ dài DB, DA, CD           e/...
Đọc tiếp

Bài 14: Cho tam giác ABC có BC = 16 cm, AB = 20 cm, AC = 12 cm.

a/ Chứng minh tam giác ABC là tam giác vuông.                                                   (1,5 điểm)   

b/ Tính sin A, t B và số đo góc B, góc A.                                                                 (2 điểm)  

c/ Vẽ đường cao CH. Tính các độ dài CH , BH, HA.                                              (1,5 điểm)   

d/ Vẽ đường phân giác CD của ABC. Tính độ dài DB, DA, CD           

e/ Đường thẳng vuông góc với BC tại B cắt tia CH tại K. Tính độ dài BK

1
28 tháng 10 2021

a: Xét ΔABC có \(AB^2=AC^2+BC^2\)

nên ΔABC vuông tại C

17 tháng 2 2017

ai mà biết được!

3:

góc C=90-50=40 độ

Xét ΔABC vuông tại A có sin C=AB/BC

=>4/BC=sin40

=>\(BC\simeq6,22\left(cm\right)\)

\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)

1:

góc C=90-60=30 độ

Xét ΔABC vuông tại A có

sin B=AC/BC

=>3/BC=sin60

=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)

=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)

17 tháng 8 2023

còn câu 2 

 

16 tháng 6 2018

Gọi H là chân đường cao kẻ từ A xuống BC trong tam giác ABC.

+ Ta có: A H ⊥ B C O A ⊥ B C ⇒ B C ⊥ O A H ⇒ O H ⊥ B C     ⇒  d(O; BC) = OH

+ Nửa chu vi tam giác ABC: p = 14 + 16 + 10 2 = 20

S A B C = 20 20 − 14 20 − 16 20 − 10 = 40 3 (theo công thức Hê-rông)

Lại có S A B C = 1/2AH.BC  ⇒ AH =  2 S A B C B C = 80 3 10 = 8 3 .

+ Tam giác OAH vuông tại A (OA ⊥ AH)

⇒  OH =  O A 2 + A H 2 = 8 2 + 8 3 2 = 16.

Vậy d(O; BC) = OH = 16.

Đáp án B