chứng minh a,b,c thuộc N thỏa mãn a^2+b^2=c^2 thì abc chia hết 60
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
NT
0
NT
0
NP
1
28 tháng 6 2017
Giả sử cả 3 số trên đều không chia hết cho 3
=> \(a^2\)= 1 (mod3) và b2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoặc chia 3 dư 1)
=> a2 + b2 = 2 (mod3) nhưng c2= 1 (mod3) => mâu thuẫn
Vậy có ít nhất 1 số chia hết cho 3 (1)
+ Tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4
=> a2 = 1 (mod4) và b2 = 1 (mod4) => a2 + b2 = 2 (mod 4) nhưng c2 = 1 (mod 4) => mâu thuẫn
vậy có ít nhất 1 số cgia hết cho 4 (2) + tương tự a2 = 1 (mod 5) hoặc a2 = -1 (mod 5) hoạc a2 = 4 (mod 5)
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3
=> phải có ít nhất 1 số chia hết cho 5 (3)
Từ (1),(2) và (3)\(\Rightarrow\) abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60
=> \(a^2\)= 1 (mod3) và b2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoặc chia 3 dư 1)
=> a2 + b2 = 2 (mod3) nhưng c2= 1 (mod3) => mâu thuẫn
Vậy có ít nhất 1 số chia hết cho 3 (1)
+ Tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4
=> a2 = 1 (mod4) và b2 = 1 (mod4) => a2 + b2 = 2 (mod 4) nhưng c2 = 1 (mod 4) => mâu thuẫn
vậy có ít nhất 1 số cgia hết cho 4 (2) + tương tự a2 = 1 (mod 5) hoặc a2 = -1 (mod 5) hoạc a2 = 4 (mod 5)
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3
=> phải có ít nhất 1 số chia hết cho 5 (3)
Từ (1),(2) và (3)\(\Rightarrow\) abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60
Z
Chứng minh rằng nếu các số tự nhiên a,b,c thỏa mãn điều kiện a^2 + b^2 = c^2 thì abc chia hết cho 60
2
29 tháng 8 2017
Giả sử a,b,c đều không chia hết cho 3 thì phải chia 3 dư 1
thay vào chia 3 dư 2 còn chia 3 dư 1 (loại)
Do đó a,b,c phải tồn tại một số chia hết cho 3 ,
Lại chúng minh tương tự để đc một trong 3 số chia hết cho 4 và 5
Rồi suy ra abc chia hêt cho 3.4.5 = 60
16 tháng 1 2019
Giả sử a,b,c đều không chia hết cho 3 thì phải chia 3 dư 1
thay vào chia 3 dư 2 còn chia 3 dư 1 (loại)
Do đó a,b,c phải tồn tại một số chia hết cho 3 ,
Lại chúng minh tương tự để đc một trong 3 số chia hết cho 4 và 5
suy ra abc chia hêt cho 3.4.5 = 60
NT
0
DF
0
NH
0
a) - Nếu a hoặc b chia hết cho 3 => abc chia hết cho 3.
- Nếu a không chia hết cho 3 và b không chia hết cho 3 => a² chia 3 dư 1, b² chia 3 dư 1 => c² chia 3 dư 2 (vô lí)
Vậy trường hợp a không chia hết cho 3 và b không chia hết cho 3 không xảy ra => abc chia hết cho 3 (*)
b) - Nếu a, b cùng chẵn => ab chia hết cho 4 => abc chia hết cho 4.
- Nếu a, b cùng lẻ => a = 2t + 1; b = 2k + 1 (t; k thuộc N)
=> a² + b² = (2t +1)² + (2k + 1)² = 4t² + 4t + 4k² + 4k + 2 = 4(t² + t + k² + k) + 2 => a² + b² chia hết cho 2 nhưng không chia hết cho 4 => c² chia hết cho 2 nhưng không chia hết cho 4 (vô lí)
Vậy trường hợp a, b cùng lẻ không xảy ra.
- Nếu a lẻ, b chẵn => c lẻ. Đặt a = 2m + 1; b = 2n; c= 2p + 1. (m, n, p thuộc N).
=> a² + b² = c²
<=> (2m + 1)² + (2n)² = (2p + 1)²
<=> 4m² + 4m + 1 + 4n² = 4p² + 4p + 1
<=> n² = p² + p - m² - m
<=> n² = p(p + 1) - m(m + 1).
p(p + 1) là tích 2 số tự nhiên liên tiếp => p(p + 1) chia hết cho 2. Cmtt => m(m + 1) chia hết cho 2 => p(p + 1) - m(m + 1) chia hết cho 2 => n² chia hết cho 2 => n chia hết cho 2 => b chia hết cho 4 => abc chia hết cho 4.
- Nếu a chẵn, b lẻ. Cmtt => a chia hết cho 4 => abc chia hết cho 4.
Vậy abc chia hết cho 4 (**)
c) - Nếu a hoặc b chia hết cho 5 => abc chia hết cho 5.
- Nếu a không chia hết cho 5 và b không chia hết cho 5 => a² chia 5 dư 1 hoặc 4; b² chia 5 dư 1 hoặc 4.
+ Nếu a² chi 5 dư 1, và b² chia 5 dư 1 => c² chia 5 dư 2 (vô lí)
+ Nếu a² chi 5 dư 1, và b² chia 5 dư 4=> c² chia 5 dư 0 => c chia hết cho 5.
+ Nếu a² chi 5 dư 4 và b² chia 5 dư 1 => c² chia 5 dư 0 => c chia hết cho 5.
+ Nếu a² chi 5 dư 4 và b² chia 5 dư 4 => c² chia 5 dư 3 (vô lí).
Vậy ta luôn tìm được một giá trị của a, b, c thỏa mãn abc chia hết cho 5. (***)
Từ (*), (**), (***), mà 3, 4, 5 đôi một nguyên tố cùng nhau => abc chia hết cho 3.4.5 hay abc chia hết cho 60. (đpcm).