giải phương trình nghiệm nguyên:
2x² + 2y² + 2xy -2x + 2y + 2 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^4-2x^2y+y^2-64=0.\)
\(x^4+x^4-2x^2y+y^2-64=0.\)
\(\left(x^4-2x^2y+y^2\right)+x^4-64=0.\)
\(\left(x^2-y\right)^2+x^4-64=0.\)
\(\left(x^2-y\right)^2+x^4=64.\)
Có \(\left(x^2-y\right)^2\ge0\)
mafk \(\left(x^2-y\right)^2+x^4=64.\)
\(\Rightarrow x^4\le64.\)
\(\Rightarrow x^2\le8\)
Từ đó xét tiếp
ta có vt = (x - y)2 + ( x + x )2 +z2 = 12
ta có chính phương <= 12 là các số 1,4,9 ta tháy bộ 3 số chính phương cọng lại bằng 12 chỉ co ( 4 , 4 ,4 ) vậy ta có hệ
( x - y )2 = z2 =4
pần còn lại bạn tự giải nha
Với câu a)bạn nhân cả 2 vế cho 12 rồi ép vào dạng bình phương 3 số
Câu b)bạn nhân cho 8 mỗi vế rồi ép vào bình phương 3 số
2x2 - 2x + 2y2 - 2y + 2 - 2xy = 0
<=> (x2 - 2xy + y2) + (x2 - 2x + 1) + (y2 - 2y + 1) = 0
<=> (x - y)2 + (x - 1)2 + (y - 1)2 = 0
<=> \(\hept{\begin{cases}x-y=0\\x-1=0\\y-1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=y\\x=1\\y=1\end{cases}}\)
Vậy x = y = 1
2x² + 2y² + 2xy -2x + 2y + 2 = 0
<=>x2+2xy+y2+x2-2x+1+y2+2y+1=0
<=>(x+y)2+(x-1)2+(y+1)2=0
<=>x-1=0 và y-1=0
<=>x=1 và y=-1