K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
28 tháng 9 2019

\(\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}\ge\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}=1\)

Dấu "=" xảy ra khi \(x=y=z\)

AH
Akai Haruma
Giáo viên
30 tháng 5 2019

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\(\left(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\right)[(x^2+2yz)+(y^2+2xz)+(z^2+2xy)]\geq (1+1+1)^2\)

\(\Leftrightarrow \frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\geq \frac{9}{x^2+2yz+y^2+2xz+z^2+2xy}=\frac{9}{(x+y+z)^2}=\frac{9}{3^2}=1\)

Ta có đpcm.

Dấu "=" xảy ra khi $x=y=z=1$

a) Áp dụng bất đẳng thức Cauchy-Schwarz , ta được
\(\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}\ge\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2xy+2yz+2xz}=1\)(đpcm)

11 tháng 5 2019

áp dụng bđt bunhia dạng phân thức ta có

\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\)\(\frac{\left(1+1+1\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}\) =\(\frac{3^2}{\left(x+y+z\right)^2}\)=\(\frac{9}{1^2}\) =9

(đpcm) vậy dấu =xảy ra khi x=y=z=\(\frac{1}{3}\)

20 tháng 2 2017

Cách khác:

Áp dụng BĐT AM-GM ta có:

\(2yz\le y^2+z^2\Rightarrow x^2+2yz\le x^2+y^2+z^2\)

\(\Rightarrow\frac{x^2}{x^2+2yz}\ge\frac{x^2}{x^2+y^2+z^2}\). Tương tự ta cũng có: \(\left\{\begin{matrix}\frac{y^2}{y^2+2xz}\ge\frac{y^2}{x^2+y^2+z^2}\\\frac{z^2}{z^2+2xy}\ge\frac{z^2}{x^2+y^2+z^2}\end{matrix}\right.\)

Cộng theo vế rồi thu gọn ta cũng được \(P_{Min}=1\)

20 tháng 2 2017

Áp dụng bđt Cauchy-Schwarz dạng Engel ta có:

P = \(\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}\ge\)\(\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2\left(xy+yz+xz\right)}=1\)

Dau "=" xay ra khi x = y = z

6 tháng 1 2018

Áp Dụng BĐT svacxơ, ta có 

\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge\frac{9}{x^2+y^2+z^2+2xy+2yz+2zx}=\frac{9}{\left(x+y+z\right)^2}=9\left(ĐPCM\right)\)

^_^

6 tháng 1 2018

Đặt a = \(x^2+2yz\); b = \(y^2+2xz\); c = \(z^2+2xy\)

\(\Rightarrow\)\(a,b,c>0\)và \(a+b+c=\left(x=y+z\right)^2=1\)

+) C/m : \(\left(a=b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Rightarrow\)\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=9\)

Hay \(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge9\)

\(\Rightarrow\)ĐPCM 

hên xui thôi -_-

9 tháng 8 2016

\(\hept{\begin{cases}2yz\le y^2+z^2\\2zx\le z^2+x^2\\2xy\le x^2+y^2\end{cases}}\)

\(VT\ge\frac{x^2}{x^2+y^2+z^2}+\frac{y^2}{x^2+y^2+z^2}+\frac{z^2}{x^2+y^2+z^2}=1\)

15 tháng 5 2019

Áp dụng BĐT Cauchy-schwarz dạng engel,ta có:

\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge\frac{\left(1+1+1\right)^2}{x^2+2yz+y^2+2xz+z^2+2xy}=\frac{9}{\left(x+y+z\right)^2}=9\)

\(\Rightarrowđpcm\)

20 tháng 9 2017

Áp dụng bdt Cauchy - Schwarz dạng phân thức ta có :

\(P=\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}\ge\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2yz+2xz+2xy}=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)

20 tháng 9 2017

Xin lỗi bn mình mới lớp6 thui à

13 tháng 5 2018

Áp dụng bất đẳng thức Cauchy , ta có : 

\(x+y+z\ge3\sqrt[3]{xyz}\)

<=> \(xyz\ge3\sqrt[3]{xyz}\)

<=> \(x^3y^3z^3\ge27xyz\)

<=> \(x^2y^2z^2\ge27\)

<=> \(\sqrt[3]{x^2y^2z^2}\ge3\)

Ta có 

\(P=\frac{1}{x^2+yz+yz}+\frac{1}{y^2+zx+zx}+\frac{1}{z^2+xy+xy}\le\frac{1}{3\sqrt[3]{x^2y^2z^2}}+\frac{1}{3\sqrt[3]{x^2y^2z^2}}+\frac{1}{3\sqrt[3]{x^2y^2z^2}}\)

                                                                                                                  \(=\frac{1}{\sqrt[3]{x^2y^2z^2}}\le\frac{1}{3}\)

Vậy Max = 1/3