thực hiện phép tính ( lớp 8)
a) ( 3x+2y)(x^2-3xy+1)
b) (x+3)(x-3)(x+1)
Giải chi tiết. cần nhanh.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c: \(=\dfrac{x^3+2x+2x^2+2x+x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{x^3+3x^2+3x+1}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{x^2+2x+1}{x^2-x+1}\)
a: \(\dfrac{x^2-xy+y^2}{x^2+2xy+y^2}\cdot\dfrac{x^2+3xy+2y^2}{x^2-3xy+2y^2}\)
\(=\dfrac{x^2-xy+y^2}{\left(x+y\right)^2}\cdot\dfrac{\left(x+2y\right)\left(x+y\right)}{\left(x-2y\right)\left(x-y\right)}\)
\(=\dfrac{\left(x^2-xy+y^2\right)\left(x+2y\right)}{\left(x-2y\right)\left(x^2-y^2\right)}\)
b: \(\dfrac{x^2+1}{3x}:\dfrac{x^2+1}{x-1}:\dfrac{x^3-1}{x^2+x}:\dfrac{x^2+2x+1}{x^2+x+1}\)
\(=\dfrac{x-1}{3x}\cdot\dfrac{x\left(x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+x+1}{\left(x+1\right)^2}\)
\(=\dfrac{x\left(x+1\right)}{3x\left(x+1\right)^2}=\dfrac{1}{3\left(x+1\right)}\)
\(A=4x^2+12xy+9y^2\)
\(B=25x^2-10xy+y^2\)
\(C=8x^3+12x^2y^2+6xy^4+y^6\)
\(D=\left(x^2\right)^2-\left(\dfrac{2}{5}y\right)^2=x^4-\dfrac{4y^2}{25}\)
\(E=x^3-27y^3\)
\(F=x^6-27\)
\(a,-2xy^2\left(x^3y-2x^2y^2+5xy^3\right)\\ =-2x^4y^3+4x^3y^4-10x^2y^5\\ b,\left(-2x\right)\left(x^3-3x^2-x+1\right)\\ =-2x^4+6x^3+2x^2-2x\\ c,\left(-10x^3+\dfrac{2}{5}y-\dfrac{1}{3}z\right)\left(-\dfrac{1}{2}zy\right)\\ =5x^3yz-\dfrac{1}{5}y^2z+\dfrac{1}{6}yz^2\\ d,3x^2\left(2x^3-x+5\right)=6x^5-3x^3+15x^2\\ e,\left(4xy+3y-5x\right)x^2y=4x^3y^2+3x^2y^2-5x^3y\\ f,\left(3x^2y-6xy+9x\right)\left(-\dfrac{4}{3}xy\right)\\ =-4x^3y^2+8x^2y^2-12x^2y\)
Bài 2:
c: \(=x^2\left(x-3\right)-4\left(x-3\right)\)
\(=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)
\(a,14x^2y-21xy^2+28x^2y^2=7xy\left(x-3y+4xy\right)\\ b,x\left(x+y\right)-5x-5y=x\left(x+y\right)-5\left(x+y\right)=\left(x+y\right)\left(x-5\right)\\ c,10x\left(x-y\right)-8\left(y-x\right)=10x\left(x-y\right)+8\left(x-y\right)=\left(x-y\right)\left(10x+8\right)=2\left(x-y\right)\left(5x+4\right)\)
\(d,\left(3x+1\right)^2-\left(x+1\right)^2=\left(3x+1-x-1\right)\left(3x+1+x+1\right)=2x\left(4x+2\right)=4x\left(2x+1\right)\)\(e,x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)+3xyz-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
a: \(=\dfrac{5}{2x^2y}+\dfrac{2}{3xy}-\dfrac{y}{x^3}\)
\(=\dfrac{5\cdot3\cdot x}{6x^3y}+\dfrac{2\cdot2\cdot x^2}{6x^3y}-\dfrac{6y^2}{6x^3y}\)
\(=\dfrac{15x+4x^2-6y^2}{6x^3y}\)
b: \(=\dfrac{2x-7+3x+5}{10x-4}=\dfrac{5x-2}{10x-4}=\dfrac{1}{2}\)
c: \(=\dfrac{x^4-1-x^4+3x^2}{x^2-1}=\dfrac{3x^2-1}{x^2-1}\)
a) \(\left(3x+2y\right)\left(x^2-3xy+1\right)=3x^3-9x^2+3x+2yx^2-6xy^2+2y\)
b) (x+3)(x-3)(x+1)=(x2-9)(x+1)=x3-9x+x2-9
a) \(\left(3x+2y\right)\left(x^2-3xy+1\right)\)
\(=\left(3x+2y\right)x^2-\left(3x+2y\right)\cdot3xy+\left(3x+2y\right)\cdot1\)
\(=3x^3+2x^2y-9x^2y-6xy^2+3x+2y\)
b) \(\left(x+3\right)\left(x-3\right)\left(x+1\right)\)
\(=\left(x^2-3^2\right)\left(x+1\right)\)
\(=\left(x^2-9\right)x+\left(x^2-9\right)\cdot1\)
\(=x^3-9x+x^2-9\)