Tìm x thuộc Q, biết:
a) (x+1)(x-2)<0
b)(x-2)\(\left(x+\frac{2}{3}\right)\)>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x-1/5)(x+2/3)<0
=>x-1/5<0 và x+2/3>0
hoặc x-1/5>0 và x+2/3<0
=>x<1/5 và x>-2/3
hoặc x>1/5 và x<-2/3(vô lí
vậy -2/3<x<1/5
câu b tương tự.tích lớn hơn 0 thì các thừa số của tích cùng dương hoặc cùng âm
Bài 1:
a) (2x-3). (x+1) < 0
=>2x-3 và x+1 ngược dấu
Mà 2x-3<x+1 với mọi x
\(\Rightarrow\begin{cases}2x-3< 0\\x+1>0\end{cases}\)
\(\Rightarrow\begin{cases}x< \frac{3}{2}\\x>-1\end{cases}\)\(\Rightarrow-1< x< \frac{3}{2}\)
b)\(\left(x-\frac{1}{2}\right)\left(x+3\right)>0\)
\(\Rightarrow x-\frac{1}{2}\) và x+3 cùng dấu
Xét \(\begin{cases}x-\frac{1}{2}>0\\x+3>0\end{cases}\)\(\Rightarrow\begin{cases}x>\frac{1}{2}\\x>-3\end{cases}\)
Xét \(\begin{cases}x-\frac{1}{2}< 0\\x+3< 0\end{cases}\)\(\Rightarrow\begin{cases}x< \frac{1}{2}\\x< -3\end{cases}\)
=>....
Bài 2:
\(S=\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{999.1001}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{999}-\frac{1}{1001}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{1001}\right)\)
\(=\frac{1}{2}\cdot\frac{998}{3003}\)
\(=\frac{499}{3003}\)
a) Với \(x\le-1\)thì \(x+1\le0;x-2\le0\Rightarrow\left(x+1\right)\left(x-2\right)\ge0;\)Loại \(x\le-1\)
Với \(x\ge2\)thì \(x+1\ge0;x-2\ge0\Rightarrow\left(x+1\right)\left(x-2\right)\ge0;\)Loại \(x\ge2\)
Với \(-1< x< 2\)thì \(x+1>0;x-2< 0\Rightarrow\left(x+1\right)\left(x-2\right)< 0;\)TMĐK.
Vậy \(-1< x< 2\)và \(x\in Q\)là nghiệm của a).
b) Tương tự, có \(\hept{\begin{cases}x>2\\x< -\frac{2}{3}\end{cases}}\)và \(x\in Q\)là nghiệm của b).
Chỗ dấu "..." bạn không cần ghi.Mình viết vậy cho dễ nhìn. Bài này có một lời giải khá độc đáo trong sách nâng cao của mình.
a) Số thừa số âm ở VT chẵn.
Mà \(x-\frac{2}{5}< x+\frac{3}{7}< x+\frac{3}{4}\) nên
\(\orbr{\begin{cases}x-\frac{2}{5}>0\\x+\frac{3}{7}< 0..và...x+\frac{3}{4}>0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x>\frac{2}{5}\\x< -\frac{3}{7}...và...x>-\frac{3}{4}\end{cases}\Leftrightarrow\orbr{\begin{cases}x>\frac{2}{5}\\-\frac{3}{4}< x< -\frac{3}{7}\end{cases}}}\)
Ta có : \(\frac{x+1}{x-4}>0\)
Thì sảy ra 2 trường hợp
Th1 : x + 1 > 0 và x - 4 > 0 => x > -1 ; x > 4
Vậy x > 4
Th2 : x + 1 < 0 và x - 4 < 0 => x < -1 ; x < 4
Vậy x < (-1) .
Ta có : \(\left(x+2\right)\left(x-3\right)< 0\)
Th1 : \(\hept{\begin{cases}x+2< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x< -2\\x>3\end{cases}}\left(\text{Vô lý }\right)}\)
Th2 : \(\hept{\begin{cases}x+2>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-2\\x< 3\end{cases}\Rightarrow}-2< x< 3}\)
a)\(\left(x+1\right)\left(x-2\right)< 0\)
\(\Rightarrow\) x + 1 và x - 2 khác dấu nhau
mà x + 1 > x - 2 với mọi x
\(\Rightarrow\begin{cases}x+1>0\\x-2< 0\end{cases}\)\(\Rightarrow\begin{cases}x=-1\\x=2\end{cases}\)\(\Rightarrow-1< x< 2\)
\(\Rightarrow x\in\left\{0;1\right\}\)
nhân vào được pt bật 2 rồi giải có gì đâu!!!!!
a) x=2;-1
b) a*b>0
thì xét 2 th a>và b> hặc a<0 và b<0
hết