một con lắc đơn có chiều dài l=1m kéo con lắc ra khỏi VTCB 1 góc αo với cos αo= 0.875 và thả cho dao động g=pi^2=9.85m/s bỏ qua ma sát tính vmax và vận tốc khi α=6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
+ Tốc độ của con lắc
v = 2 gl cosα − cosα 0 = 3 , 31 m/s.
vận tốc vật ở góc lệch a: \(v_{\left(\alpha\right)}=\pm\sqrt{2gl\left(\cos\alpha_2-\cos\alpha_1\right)}\) ( thuộc càng tốt )
lực căng dây:\(T_c=mg\left(3\cos\alpha_2-2\cos\alpha_1\right)\)
Bây giờ mình sẽ đi chứng minh 2 công thức trên :D
Chọn mốc tính thế năng tại vị trí thấp nhất của vật
Cơ năng của vật ứng với góc \(\alpha_1=45^0\) là:
\(W_1=W_{đ1}+W_{t1}=\dfrac{1}{2}mv_1^2+mgz_1=0+mgl\left(1-\cos\alpha_1\right)\)
Cơ năng của vật ứng với góc \(\alpha_2=30^0\) là:
\(W_2=W_{đ2}+W_{t2}=\dfrac{1}{2}mv_2^2+mgz_2=\dfrac{1}{2}mv_2^2+mgl\left(1-\cos\alpha_2\right)\)
Bỏ qua ma sát ( sức cản kk ) cơ năng được bảo toàn:
\(W_1=W_2\) \(\Leftrightarrow0+mgl\left(1-\cos\alpha_1\right)=\dfrac{1}{2}mv_2^2+mgl\left(1-\cos\alpha_2\right)\)
\(\Leftrightarrow v_2=\pm\sqrt{2gl\left(\cos\alpha_2-\cos\alpha_1\right)}=\pm1,78\left(m/s\right)\)
Chọn trục tọa độ Oy hướng tâm:
Phương trình định luật II Niu tơn cho vật:
\(a=\dfrac{-P\cos\alpha+T_c}{m}\) trong đó: \(a=a_{ht}=\dfrac{v^2}{R}=\dfrac{v^2}{l}\) và v thì đã được chứng minh ở câu trên
Từ đấy ta có: \(\dfrac{\left(\pm\sqrt{2gl\left(\cos\alpha_2-\cos\alpha_1\right)}\right)^2}{l}=\dfrac{-P\cos\alpha_2+T_c}{m}\)
\(\Rightarrow2mg\left(\cos\alpha_2-\cos\alpha_1\right)=-P\cos\alpha_2+T_c\)
\(\Rightarrow T_c=mg\left(3\cos\alpha_2-2\cos\alpha_1\right)=\) bạn thay số nốt hộ mình là xong :D hơi thấm mệt
Đáp án B
Tốc độ của con lắc khi đi qua VTCB
Tầm ném bay xa của vật theo phương ngang
Vậy khoảng cách từ vị trí tuột dây đến vị trí chạm đất