K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2016

A= \(\frac{3}{x+3}+\frac{1}{x-3}-\frac{18}{9-x^2}=\frac{3x-9}{\left(x+3\right)\left(x-3\right)}+\frac{x+3}{\left(x+3\right)\left(x-3\right)}+\frac{18}{\left(x+3\right)\left(x-3\right)}\)

\(\frac{3x-9+x+3+18}{\left(x+3\right)\left(x-3\right)}=\frac{4x+12}{\left(x+3\right)\left(x-3\right)}=\frac{4}{x-3}\)

b) để A=4 thì \(\frac{4}{x-3}=4\)=> x-3=1=|> x=4

25 tháng 12 2017

Cây dừa, cây hành, cây ngô

8 tháng 8 2018

\(\frac{1}{3x-2}-\frac{1}{3x+2}-\frac{3x-6}{4-9x^2}\)

\(=\frac{3x+2}{9x^2-4}-\frac{3x-2}{9x^2-4}+\frac{3x-6}{9x^2-4}\)

\(=\frac{3x+2-3x+2+3x-6}{9x^2-4}\)

\(=\frac{3x-2}{9x^2-4}\)

\(=\frac{1}{3x+2}\)

\(\frac{18}{\left(x-3\right)\left(x^2-9\right)}-\frac{3}{x^2-6x+9}-\frac{x^2}{x^2-9}\)

\(=\frac{18}{\left(x-3\right)\left(x-3\right)\left(x+3\right)}\) \(-\frac{3\left(x+3\right)}{\left(x-3\right)\left(x-3\right)\left(x+3\right)}\)\(-\frac{x^2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)\left(x-3\right)}\)

\(=\frac{18-3x-9-x^3+3x^2}{\left(x-3\right)^2\left(x+3\right)}\)

\(=\frac{-x^3+3x^2-3x+9}{\left(x-3^2\right)\left(x+3\right)}\)

\(=\frac{\left(-x^2-3\right)\left(x-3\right)}{\left(x-3^2\right)\left(x+3\right)}\)

\(=\frac{-x^2-3}{\left(x-3\right)\left(x+3\right)}\)

học tốt

23 tháng 12 2017

\(x\ne+-3\)

\(3\left(x-3\right)+1\left(x+3\right)+18\)

3x-9+x+3+18

4x+15

x=-15/4

19 tháng 7 2016

1) \(\frac{xy}{x^2+y^2}=\frac{3}{8}\Leftrightarrow3x^2+3y^2-8xy=0\)

Nhận thấy điều kiện của phương trình là x,y cùng khác 0

Chia cả hai vê của phương trình trên cho \(y^2\ne0\)được :

\(3\left(\frac{x}{y}\right)^2-8\left(\frac{x}{y}\right)+3=0\). Đặt \(a=\frac{x}{y}\), phương trình trở thành : \(3a^2-8a+3=0\Leftrightarrow\orbr{\begin{cases}x=\frac{4+\sqrt{7}}{3}\\x=\frac{4-\sqrt{7}}{3}\end{cases}}\)

Từ đó rút ra được tỉ lệ của \(\frac{x}{y}\). Bạn thay vào tính A là được :)

2) \(\frac{x^9-1}{x^9+1}=7\Leftrightarrow\frac{x^9-1}{x^9+1}-1=6\Leftrightarrow\frac{-2}{x^9+1}=6\Leftrightarrow x^9=\frac{-2}{6}-1=-\frac{4}{3}\)

Ta có \(A=\frac{\left(x^9\right)^2-1}{\left(x^9\right)^2+1}\). Thay giá trị của x9 vừa tính ở trên vào là được :)

a) Ta có: \(N=\left(\frac{x+3}{x-3}+\frac{18}{9-x^2}+\frac{x-3}{x+3}\right):\left(1-\frac{x+1}{x+3}\right)\)

\(=\left(\frac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}-\frac{18}{\left(x-3\right)\left(x+3\right)}+\frac{\left(x-3\right)^2}{\left(x+3\right)\left(x-3\right)}\right):\left(\frac{x+3}{x+3}-\frac{x+1}{x+3}\right)\)

\(=\frac{x^2+6x+9-18-\left(x^2-6x+9\right)}{\left(x-3\right)\left(x+3\right)}:\frac{2}{x+3}\)

\(=\frac{x^2+6x-9-x^2+6x-9}{\left(x-3\right)\left(x+3\right)}\cdot\frac{x+3}{2}\)

\(=\frac{12x-18}{\left(x-3\right)\left(x+3\right)}\cdot\frac{x+3}{2}\)

\(=\frac{12x-18}{x-3}\cdot\frac{1}{2}\)

\(=\frac{12x-18}{2x-6}\)

b)

ĐKXĐ: \(\left\{{}\begin{matrix}x-3\ne0\\x+3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne3\\x\ne-3\end{matrix}\right.\)

Đặt \(N=-\frac{1}{2}\)

\(\Leftrightarrow\frac{12x-18}{2x-6}=-\frac{1}{2}\)

\(\Leftrightarrow12x-18=\frac{6-2x}{2}\)

\(\Leftrightarrow12x-18=3-x\)

\(\Leftrightarrow12x-18-3+x=0\)

\(\Leftrightarrow13x-21=0\)

\(\Leftrightarrow13x=21\)

hay \(x=\frac{21}{13}\)(tm)

Vậy: Khi \(N=-\frac{1}{2}\) thì \(x=\frac{21}{13}\)

c) Để N<0 thì 12x-18 và 2x-6 khác dấu

*Trường hợp 1:

\(\left\{{}\begin{matrix}12x-18>0\\2x-6< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}12x>18\\2x< 6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>\frac{3}{2}\\x< 3\end{matrix}\right.\)\(\Leftrightarrow\frac{3}{2}< x< 3\)

*Trường hợp 2:

\(\left\{{}\begin{matrix}12x-18< 0\\2x-6>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}12x< 18\\2x>6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< \frac{3}{2}\\x>3\end{matrix}\right.\)(vô lý)

Vậy: Khi N<0 thì \(\frac{3}{2}< x< 3\)

3 tháng 12 2015

 

\(A=\frac{3}{x+3}+\frac{1}{x-3}+\frac{18}{\left(x-3\right)\left(x+3\right)}=\frac{3\left(x-3\right)+\left(x+3\right)+18}{\left(x-3\right)\left(x+3\right)}=\frac{4x+12}{\left(x-3\right)\left(x+3\right)}=\frac{4\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{4}{x-3}\)

Với x = 1

\(A=\frac{4}{x-3}=\frac{4}{1-3}=\frac{4}{-2}=-2\)

 

17 tháng 3 2019

a, ĐKXĐ :\(x\ne3;x\ne-3\)

b, \(P=\frac{3\cdot\left(x-3\right)}{\left(x-3\right)\cdot\left(x+3\right)}+\frac{x+3}{\left(x+3\right)\cdot\left(x-3\right)}+\frac{18}{\left(x+3\right)\cdot\left(x-3\right)}\)

       \(=\frac{3x-9+x+3+18}{\left(x+3\right)\cdot\left(x-3\right)}\)\(=\frac{4x+12}{\left(x-3\right)\cdot\left(x+3\right)}\)

        \(=\frac{4\cdot\left(x+3\right)}{\left(x+3\right)\cdot\left(x-3\right)}=\frac{4}{x-3}\)

c, Với P = 4 \(\Rightarrow\frac{4}{x-3}=4\Rightarrow4=4\cdot\left(x-3\right)\)\(\Rightarrow1=x-3\Rightarrow x=4\)

13 tháng 4 2019

bài1   A=\(\left(\frac{3-x}{x+3}\cdot\frac{x^2+6x+9}{x^2-9}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)

=\(\left(-\frac{x-3\cdot\left(x+3\right)^2}{\left(x+3\right)^2\cdot\left(x-3\right)}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)

=\(-\frac{x}{x+3}\cdot\frac{x+3}{3x^2}=\frac{-1}{3x}\)

b)  thế \(x=-\frac{1}{2}\)vào biểu thức A

 \(-\frac{1}{3\cdot\left(-\frac{1}{2}\right)}=\frac{2}{3}\)

c)  A=\(-\frac{1}{3x}< 0\)

VÌ (-1) <0  nên  3x>0

                        x >0

25 tháng 5 2017

A= \(\frac{3\left(x-3\right)+\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}-\frac{18}{\left(9-x^2\right)}\)

A= \(\frac{3x-9+x+3}{\left(x-3\right)\left(x+3\right)}+\frac{18}{x^2-9}\)

A=\(\frac{3x+x-9+3}{\left(x-3\right)\left(x+3\right)}+\frac{18}{\left(x-3\right)\left(x+3\right)}\)

A=\(\frac{4x+12}{\left(x-3\right)\left(x+3\right)}\)

A=\(\frac{4\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\)

A=\(\frac{4}{\left(x-3\right)}\)

để A=4

=>   \(\frac{4}{x-3}=4\)

<=>  x-3=1

<=> x=4

25 tháng 5 2017

a, Rút gọn : 

\(A=\frac{3}{x+3}+\frac{1}{x-3}-\frac{18}{9-x^2}\)

\(A=\frac{3\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\frac{1\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}+\frac{18}{\left(x+3\right)\left(x-3\right)}\)

\(A=\frac{3x-9+x+3+18}{\left(x+3\right)\left(x-3\right)}\)

\(A=\frac{4x+12}{\left(x+3\right)\left(x-3\right)}\)

\(A=\frac{4\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}\)

\(A=\frac{4}{x-3}\)

b, Để A = 4 

\(\Leftrightarrow\frac{4}{x-3}=4\)

\(\Leftrightarrow4\left(x-3\right)=4\)

\(\Leftrightarrow4x-12=4\)

\(\Leftrightarrow4x=16\)

\(\Leftrightarrow x=4\)

Vậy để a = 4 thì x = 4