Cho góc AOB nhọn. Trên nửa mặt phẳng chứa tia OB có bờ là đường thẳng OA, ta dựng tia OA" vuông góc với tia OA. Trên nửa mặt phẳng bờ chứa tia OA có bờ là đường thẳng chứa tia OB, ta dựng tia OB" vuông góc với tia OB. Tính tổng số đo của góc AOB và góc A"OB"
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có góc bẹt O=A'OB'+A'OA+AOB+BOB' = 360 độ
suy ra A'OB'+AOB = 180 độ
Ta có hình vẽ:
Giả sử Om là tia phân giác của AOB => \(AOm=BOm=\frac{1}{2}.AOB\)
Do OA' vuông góc với OA; OB' vuông góc với OB
=> AOA' = 90o; BOB' = 90o
Ta có: AOB + A'OB = AOA' = 90o (1)
AOB + AOB' = BOB' = 90o (2)
Từ (1) và (2) => A'OB = AOB'
Quay trở lại với giả sử lúc đầu, từ giả sử ta đã suy ra\(AOm=BOm=\frac{1}{2}.AOB\)
=> A'OB + BOm = AOm + AOB'
=> A'Om = B'Om
Mà Om nằm giữa 2 tia OA' và OB'
=> Om là tia phân giác của A'OB' (đpcm)
b) Ta có:
A'OB' + AOB = BOB' + BOA' + AOB
=> A'OB' + AOB = 90o + AOA'
=> A'OB' + AOB = 90o + 90o = 180o (đpcm)
gọi ot là tia phân giác của oa và ob suy ra ot nằm giữa 2 tia oa và ob mà oa'vuông góc oa. ob' vuông góc ob nên tia ot nằm giữa 2 tia oa' và ob' mà tob' = toa' = 1/2 a'ob' nên ot là tia phân giác của a'ob' suy ra aob và a'ob' có chung tia phân giác là ot Phần b tách ra các góc cộng vào = a'ob'