K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2015

2100 = 24.25 = (...6) có chữ số âận cùng là 6.

71991 = 74.497 = (...1) có chữ số tận cùng là 1

2100=24.25=(...6) có chữ số tận cùng là 6

71991=74.497=(...1) có chữ số tận cùng là 1

26 tháng 9 2016

ta có 91991=91990x9=(92)995x9=81995x9

vì 81 lũy thừa bao nhiêu đều có tận cùng là 1

vậy 91991có chữ số tận cùng là 9

26 tháng 9 2016

Đ/số : chữ số tận cùng là 1

7 tháng 8 2019

Ta có : 2 ^ 4 = 16 có tận cùng là 6

Nên ( 2 ^ 4 ) ^ 13 = 2 ^ 52 có tận cùng là 6

=> 2 ^ 52 . 2 = 2 ^ 53 có tận cùng là 2

Ta có : 6 ^ n với n là số tụ nhiên khác 0 có tận cùng là 6

Nên : 6 ^ 70 có tận cùng là 6

Do đó  : 2 ^ 53 . 6 ^ 70 có tận cùng là 2

20 tháng 10 2021
Đó là một số
8 tháng 10 2023

Để tìm chữ số tận cùng, chúng ta chỉ quan tâm đến phần dư khi chia cho 10 của mỗi số hạng. Vì 3^31 và 7^100 đều lớn và tính toán chính xác số này có thể rất phức tạp, chúng ta có thể sử dụng tính chất của phép lũy thừa để đơn giản hóa bài toán.

Chúng ta biết rằng chữ số tận cùng của 3^31 sẽ là chữ số tận cùng của 3^1, 3^2, 3^3, ..., 3^30, 3^31. Tương tự, chữ số tận cùng của 7^100 sẽ là chữ số tận cùng của 7^1, 7^2, 7^3, ..., 7^99, 7^100.

Ta có thể lập bảng và tìm một mẫu lặp lại của chữ số tận cùng để giải quyết bài toán này:

3^1: 3 3^2: 9 3^3: 7 3^4: 1 3^5: 3 ...

7^1: 7 7^2: 9 7^3: 3 7^4: 1 7^5: 7 ...

Nhận thấy rằng chữ số tận cùng của các lũy thừa của 3 lặp lại theo chu kỳ 4 (3, 9, 7, 1) và chữ số tận cùng của các lũy thừa của 7 lặp lại theo chu kỳ 4 (7, 9, 3, 1).

Vì vậy, chúng ta chỉ cần tìm chữ số tận cùng của 3^31 và 7^100 trong chu kỳ này.

3^31 có chữ số tận cùng là chữ số tận cùng của 3^3 (7) vì 31 chia hết cho 4. 7^100 có chữ số tận cùng là chữ số tận cùng của 7^4 (1) vì 100 chia hết cho 4.

Tổng của chữ số tận cùng này là 7 + 1 = 8.

Vậy, chữ số tận cùng của 3^31 + 7^100 là 8.

8 tháng 10 2023

ko coppy chatGPT

31 tháng 10 2015

bạn viết cách giải đi để mình ****

8 tháng 4 2015

Tìm chữ số tận cùng của \(234^{6^{7^8}}\):

\(7^{4n}\)có chữ số tận cùng là 1 => \(7^8\)có chữ số tận cùng là 1.

Ta có: \(234^{6^{\left(...1\right)}}\)

\(6^n\)có chữ số tận cùng là 6 (n \(\in\) N*) => \(6^{\left(...1\right)}\)có chữ số tận cùng là 6.

Ta lại có: \(234^{\left(...6\right)}\)

Số có chữ số tận cùng là 4 khi nâng lên lũy thừa với số mũ 6 luôn có chữ số tận cùng là 6 =>\(234^{\left(...6\right)}\)có chữ số tận cùng là 6.

            Kết luận \(234^{6^{7^8}}\)có chữ số tận cùng là 6.

 

8 tháng 4 2015

Mình chắn chắn 100%. Mình đã mất công ghi lời giải rồi thì bạn chọn Đúng cho mình đi !

 

8 tháng 10 2023

máy tính