Tìm giá trị nhỏ nhất
A=x (x+1) (x+2) (x+3)
B=x2- 4x + y2 - 8y + 6
GIÚP VỚI, MÌNH ĐANG CẦN GẤP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x2 +x +1 = x2 + x + 1/4 + 3/4 =(x+1/2)2 + 3/4
=> GTNN a) =3/4 khi x=-1/2
b) 4x2 +4x -5 = 4x2 + 4x +1 -6 = (2x+1)2-6
=> GTNN b) = -6 khi x=-1/2
c) (x-3)(x+5) +4 = x2+2x -11 = x2+2x +1-12=(x+1)2-12
GTNN c) =12 khi x=-1
d) x2-4x+y2-8y+6=x2-4x+4+y2-8y+16-14=(x-2)2+(y-4)2-14
GTNN d) =-14 khi x=2 , y=4
\(a,=\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu \("="\Leftrightarrow x=-\dfrac{1}{2}\)
\(b,=\left(4x^2+4x+1\right)-6=\left(2x+1\right)^2-6\ge-6\)
Dấu \("="\Leftrightarrow x=-\dfrac{1}{2}\)
\(c,=x^2+2x-15+4=\left(x+1\right)^2-12\ge-12\)
Dấu \("="\Leftrightarrow x=-1\)
\(d,=\left(x^2-4x+4\right)+\left(y^2-8y+16\right)-14=\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)
A= x(x+5)+3(x+5)+4 =x2+5x+3x+15+4 =x2+8x+19 =x2+2.4.x+16+3=(x+4)2+3
ta thay : (x+4)2>hoac = 0 suy ra Amin khi va chi khi x+4=0 suy ra x=-4
Vay Amin = 3 khi x=-4
B=x2-4x+4+y2-8y+16-14 =(x-2)2+(y-4)2-14
vi (x-2)2 va (y-4)2 lon hon hoac bang 0 suy ra Bmin khi va chi khi (x-2)2=0 va (y-4)2=0
tinh ra nhu cau a (ban tu lam nhe)
vay Bmin=-14 va x=2 va y=4
Bài 1:
\(A=x^2+6x+9+x^2-10x+25\)
\(=2x^2+4x+34\)
\(=2\left(x^2+2x+17\right)\)
\(=2\left(x+1\right)^2+32>=32\forall x\)
Dấu '=' xảy ra khi x=-1
x + 3y = 10 <=> x = 10 - 3y thay vào D ta được:
D = (10 - 3y)2 + y2 = 100 - 60y + 9y2 + y2
D = 10y2 - 60y + 100 = 10(y2 - 6y + 10)
D = 10(y2 -2y3 + 9 + 1) = 10[(y - 3)2 + 1]
D = 10(y - 3)2 + 10 \(\ge\)10
Dấu "=" xảy ra khi: y - 3 = 0 <=> y = 3
=> x = 10 - 3y = 10 - 3.3= 1
Vậy gtnn D = 10 khi x = 1, y = 3
Bài 2:
a) Ta có: \(\left|2x-5\right|\ge0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|\le0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|+3\le3\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)
`B = x^2- 2xy + y^2 + 2x - 10y + 17
`2B = 2x^2 - 4xy + 2y^2 + 4x - 20y + 34`
`= (x-y)^2 + (x+2)^2 + (y-5)^2 + 5 >= 5`.
\(a,\) Đặt \(A=\dfrac{3x^2-2x+3}{x^2+1}\Leftrightarrow Ax^2+A=3x^2-2x+3\)
\(\Leftrightarrow x^2\left(A-3\right)-2x+A-3=0\)
Coi đây là PT bậc 2 ẩn x, PT có nghiệm
\(\Leftrightarrow\Delta=4-4\left(A-3\right)^2\ge0\\ \Leftrightarrow\left(A-3\right)^2\le1\Leftrightarrow2\le A\le4\)
Vậy \(A_{min}=4\Leftrightarrow\dfrac{3x^2-2x+3}{x^2+1}=4\Leftrightarrow x=...\)
\(b,\) Đặt \(B=\dfrac{3x^2-4x+4}{x^2+2}\Leftrightarrow Bx^2+2B=3x^2-4x+4\)
\(\Leftrightarrow x^2\left(B-3\right)+4x+2B-4=0\)
Coi đây là PT bậc 2 ẩn x, PT có nghiệm
\(\Leftrightarrow\Delta=16-8\left(B-2\right)\left(B-3\right)\ge0\\ \Leftrightarrow\left(B-2\right)\left(B-3\right)\le2\\ \Leftrightarrow B^2-5B+4\le0\\ \Leftrightarrow\left(B-1\right)\left(B-4\right)\le0\\ \Leftrightarrow1\le B\le4\)
Vậy\(B_{min}=4\Leftrightarrow\dfrac{3x^2-4x+4}{x^2+2}=4\Leftrightarrow x=...\)
\(A=\left[\frac{6x^2}{x^3-1}-\frac{2x-2}{x^2+x+1}-\frac{1}{x-1}\right]:\frac{x^2+9}{\left(x-1\right)\left(9-4x\right)}\)
\(=\left[\frac{6x^2}{x^3-1}-\frac{\left(2x-2\right)\left(x-1\right)}{\left(x^2+x+1\right)\left(x-1\right)}-\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right]\cdot\frac{\left(x-1\right)\left(9-4x\right)}{x^2+9}\)
\(=\frac{6x^2-\left(2x^2-4x+2\right)-x^2-x-1}{\left(x^2+x+1\right)\left(x-1\right)}\cdot\frac{\left(x-1\right)\left(9-4x\right)}{x^2+9}\)
\(=\frac{5x^2-2x^2+4x-2-x-1}{\left(x^2+x+1\right)}\cdot\frac{\left(9-4x\right)}{x^2+9}\)
\(=\frac{3x^2+3x-3}{\left(x^2+x+1\right)}\cdot\frac{\left(9-4x\right)}{x^2+9}\)
Biểu thức A bạn viết đúng chưa?
A=x (x+1) (x+2) (x+3)
=x(x+3)(x+1)(x+2)
=(x2+3x)+(x2+3x+2)
=(x2+3x)2+2(x2+3x)
=(x2+3x)2+2(x2+3x)+1-1
=(x2+3x+1)2-1\(\ge\)-1
Dấu "=" xảy ra khi x2+3x+1=0
<=>\(x=\frac{-3+\sqrt{5}}{2}\) hoặc \(x=\frac{-3-\sqrt{5}}{2}\)
Vậy GTNN của A là -1 tại x=\(\frac{-3+\sqrt{5}}{2}\) hoặc \(x=\frac{-3-\sqrt{5}}{2}\)
B=x2- 4x + y2 - 8y + 6
=x2-4x+4+y2-8y+16-14
=(x-2)2+(y-4)2-14\(\ge\)-14
Dấu "=" xảy ra khi: x=2 và y=4
Vậy GTNN của B là -14 tại x=2 và y=4