Ai giải giùm mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(n_{Zn}=\dfrac{13}{65}=0,2\left(mol\right);n_{HCl}=0,2.0,1=0,02\left(mol\right)\)
PTHH: Zn + 2HCl → ZnCl2 + H2
Mol: 0,01 0,02 0,01 0,01
Ta có: \(\dfrac{0,2}{1}>\dfrac{0,02}{2}\) ⇒ Zn dư, HCl hết
\(n_{Zndư}=0,2-0,01=0,19\left(mol\right)\)
b, \(m_{ZnCl_2}=0,01.136=1,36\left(g\right)\)
c, \(V_{H_2}=0,01.22,4=0,224\left(l\right)\)
"Trổ tay nghề" lại đi bạn, chụp vầy ai nhìn được chắc mắt gắn chức năng làm rõ hình ảnh :D
Đồng nhất hệ số 2 vế thôi, hệ số các vecto bên vế trái bằng với vế phải (bên vế trái ko có \(\overrightarrow{c}\) nên coi như hệ số của nó bằng 0, do đó \(-\left(2m+n\right)=0\Rightarrow2m+n=0\))
Số học sinh mặc áo xanh chiếm số phần tổng số học sinh tham gia đồng diễn là:
\(1-\frac{2}{5}-\frac{1}{4}=\frac{7}{20}\)(tổng số học sinh)
Đáp số: \(\frac{7}{20}\)
TL:
Gọi tổng số học sinh là: 1
Số học sinh mặc áo xanh chiếm số phần là:
1 - (1/4 + 2/5) = 7/20 (phần số học sinh)
Đáp số: 7/20 phần số học sinh.
HT
\(1\cdot2+2\cdot3+3\cdot4+...+n\left(n+1\right)\\ =\dfrac{1}{3}\left[1\cdot2\cdot3+2\cdot3\cdot3+...+3n\left(n+1\right)\right]\\ =\dfrac{1}{3}\left[1\cdot2\left(3-0\right)+2\cdot3\left(4-1\right)+...+n\left(n+1\right)\left(n+2-n+1\right)\right]\\ =\dfrac{1}{3}\left[1\cdot2\cdot3-1\cdot2\cdot3+2\cdot3\cdot4-...-\left(n-1\right)n\left(n+1\right)+n\left(n+1\right)\left(n+2\right)\right]\\ =\dfrac{n\left(n+1\right)\left(n+2\right)}{3}\)
ta có:
30x30x30x::7
-->270.x^3::7
mà 270 ko ::7 -->x sẽ thuộc tập hợp b(7)=7;14;21;......
vậy x là tất cả các số ::7
tích của r x r là:
78,5: 3,14=25(cm)
r=5 cmvì 5 x 5= 25(cm)
đáp số :5 cm
tích nha
Lời giải:
Bài 1:
Áp dụng BĐT Cauchy-Schwarz dạng cộng mẫu:
( \(\frac{a_1^2}{x_1}+\frac{a_2^2}{x_2}+...+\frac{a_n^2}{x_n}\geq \frac{(a_1+a_2+...+a_n)^2}{x_1+x_2+...+x_n}\)- Bản chất chính là BĐT Cauchy-Schwarz thu gọn)
\(\text{VT}=\frac{a^{4030}}{a^{2014}(b+c-a)}+\frac{b^{4030}}{b^{2014}(a+c-b)}+\frac{c^{4030}}{c^{2014}(a+b-c)}\geq\frac{(a^{2015}+b^{2015}+c^{2015})^2}{a^{2014}(b+c)+b^{2014}(c+a)+c^{2014}(a+b)-(a^{2015}+b^{2015}+c^{2015})} \)
Giờ chỉ cần chứng minh \(a^{2014}(b+c)+b^{2014}(c+a)+c^{2014}(a+b)-(a^{2015}+b^{2015}+c^{2015})\leq a^{2015}+b^{2015}+c^{2015}\)
\(\Leftrightarrow (a-b)(a^{2014}-b^{2014})+(b-c)(b^{2014}-c^{2014})+(c-a)(c^{2014}-a^{2014})\geq 0\)
\(\Leftrightarrow (a-b)^2(a^{2013}+....+b^{2013})+(b-c)^2(b^{2013}+...+c^{2013})+(c-a)^2(c^{2013}+...+a^{2013})\geq 0\)
BĐT này luôn đúng với $a,b,c>0$
Do đó \(\text{VT}\geq \frac{a^{2015}+b^{2015}+c^{2015})^2}{a^{2015}+b^{2015}+c^{2015}}=a^{2015}+b^{2015}+c^{2015}\) ( đpcm)
Dấu $=$ xảy ra khi $a=b=c$
Bài 2:
Áp dụng BĐT Cauchy-Schwarz:
\(17\left ( a^2+\frac{1}{b^2} \right )=\left ( a^2+\frac{1}{b^2} \right )(1+4^2)\geq \left ( a+\frac{4}{b} \right )^2\)
\(\Rightarrow \sqrt{a^2+\frac{1}{b^2}}\geq \frac{a+\frac{4}{b}}{\sqrt{17}}\). Tương tự với các phân thức còn lại......
\(S\geq \frac{1}{\sqrt{17}}\left(a+b+c+\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\right)\)
Áp dụng BĐT Cauchy-Schwarz dạng cộng mẫu:
\(\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\geq \frac{36}{a+b+c}\Rightarrow S\geq \frac{1}{\sqrt{17}}\left(a+b+c+\frac{36}{a+b+c}\right)\)
Áp dụng BĐT Am-Gm: \(a+b+c+\frac{9}{4(a+b+c)}\geq 2\sqrt{\frac{9}{4}}=3\)
Mặt khác, vì $a+b+c\leq\frac{3}{2}$ nên \(\frac{135}{4(a+b+c)}\geq \frac{45}{2}\)
\(\Rightarrow S\geq \frac{51}{2\sqrt{17}}=\frac{3\sqrt{17}}{2}\)
Vậy \(S_{\min}=\frac{3\sqrt{17}}{2}\Leftrightarrow (a,b,c)=\left(\frac{1}{2},\frac{1}{2},\frac{1}{2}\right))\)