Cho tam giác ABC nhọn nội tiếp (O,R), đường ca BE và CF, tiếp tuyến tại B và C cắt nhau tại S. M là giao điểm của BC và OS. Chứng minh
a) Tứ giác SBOC nội tiếp, OM.OS=R^2
b) AF.BC=EF.AC
c) góc AME= ASB
d) AM cắt EF tại N, AS cắt BC tại P. Chứng minh NP vuông góc vói BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) Vì $SB, SC$ là tiếp tuyến $(O)$ nên $SB\perp OB, SC\perp OC$
$\Rightarrow \widehat{OBS}=\widehat{OCS}=90^0$
Tứ giác $SBOC$ có tổng 2 góc đối nhau $\widehat{OBS}+\widehat{OCS}=90^0+90^0=180^0$ nên $SBOC$ là tứ giác nội tiếp.
b)
$\widehat{BEC}=\widehat{BFC}=90^0$ và cùng nhìn cạnh $BC$ nên $BFEC$ là tứ giác nội tiếp
$\Rightarrow \widehat{IFB}=\widehat{AFE}=\widehat{ACB}(1)$
Mà:
$\widehat{IBF}=\widehat{IBA}=\widehat{ACB}(2)$ (góc nt tạo bởi tiếp tuyến và dây cung thì bằng góc nội tiếp chắn cung đó)
Từ $(1);(2)\Rightarrow \widehat{IFB}=\widehat{IBF}$
$\Rightarrow \triangle IFB$ cân tại $I$
$\Rightarrow IF=IB$
c)
$\widehat{FAK}=\widehat{BAO}=\frac{180^0-\widehat{AOB}}{2}=90^0-\widehat{ACB}=\widehat{CAD}(3)$
$\widehat{AFK}=\widehat{AFE}=\widehat{ACB}=\widehat{ACD}(4)$
Từ $(3);(4)\Rightarrow \triangle AFK\sim \triangle ACD$ (g.g)
$\Rightarrow \frac{AF}{AC}=\frac{FK}{CD}(*)$
Mặt khác:
Dễ thấy $\triangle AFE\sim \triangle ACB$ (g.g)
$\Rightarrow \frac{AF}{AC}=\frac{FE}{CB}(**)$
Từ $(*);(**)\Rightarrow \frac{FK}{CD}=\frac{EF}{BC}$
$\Rightarrow FK.BC=EF.CD$ (đpcm)
llllllllllllllllllllllllllllllllllllllllllllllllllllllllllloooooooooooooooonnnnnnnnnnnnnnnnnn
a. Xét tứ giác AEHF có: \(\left\{{}\begin{matrix}\widehat{HFA}=90^o\\\widehat{HEA}=90^o\end{matrix}\right.\)\(\Rightarrow\widehat{HFA}+\widehat{HEA}=180^o\)\(\Rightarrow\)Tứ giác AEHF nội tiếp đường tròn đường kính HA
Tương tự ta có, xét tứ giác BCEF có: \(\left\{{}\begin{matrix}\widehat{BFC}=90^o\\\widehat{BEC}=90^o\end{matrix}\right.\)\(\Rightarrow\widehat{BFC}+\widehat{BEC}=180^o\)\(\Rightarrow\) Tứ giác BCEF nội tiếp đường tròn đường kính BC
b. Xét đường tròn (O;R) có: \(\widehat{CNM}=\widehat{CBM}\) (cùng nhìn \(\stackrel\frown{CM}\))
Xét tứ giác BCEF nội tiếp đường tròn ta có: \(\widehat{CFE}=\widehat{CBE}\) (cùng nhìn \(\stackrel\frown{CM}\))
\(\Rightarrow\widehat{CNM}=\widehat{CFE}\) (ở vị trí đồng vị)
\(\Rightarrow\)MN//EF (đpcm)
a: Xét tứ giác AEHF có
\(\widehat{AEH}+\widehat{AFH}=180^0\)
Do đó: AEHF là tứ giác nội tiếp
Xét tứ giác BCEF có
\(\widehat{BFC}=\widehat{BEC}=90^0\)
Do đó: BCEF là tứ giác nội tiếp
bạn tự kẻ hình nha
a) Xét (o) có SB và SC là hai tiếp tuyến
=> góc SBO = góc SCO = 90độ
=> góc SOC + góc SOB = 90 độ +90độ = 180 độ
Mà 2 góc này ở vị trí đối nhau của tg SBOC
=> tg SBOC nội tiếp