cmr:
nếu \(\frac{x}{a+2b+c}=\frac{y}{2a+b+x}=\frac{z}{4a-4b-c}\)
thì \(\frac{a}{x+2y+z}=\frac{b}{2x+y-z}=\frac{c}{4x-4y+z}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}\)
=>\(\frac{x}{a+2b+c}=\frac{2y}{4a+2b-2c}=\frac{z}{4a-4b+c}\)
Áp dụng t/c dãy tỉ số=nhau:
\(\frac{x}{a+2b+c}=\frac{2y}{4a+2b-2c}=\frac{z}{4a-4b+c}\)\(=\frac{x+2y+z}{a+2b+c+4a+2b-2c+4a-4b+c}=\frac{x+2y+z}{9a}\left(1\right)\)
\(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}\)
=>\(\frac{2x}{2a+4b+2c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}\)
Áp dụng t/c dãy tỉ số=nhau:
\(\frac{2x}{2a+4b+2c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}=\)\(\frac{2x+y-z}{2a+4b+2c+2a+b-c-4a+4b-c}=\frac{2x+y-z}{9b}\left(2\right)\)
\(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}\)
=>\(\frac{4x}{4a+8b+4c}=\frac{4y}{8a+4b-4c}=\frac{z}{4a-4b+c}\)
Áp dụng t/c dãy tỉ số=nhau:
\(\frac{4x}{4a+8b+4c}=\frac{4y}{8a+4b-4c}=\frac{z}{4a-4b+c}=\)\(\frac{4x-4y+z}{4a+8b+4c-8a-4b+4c+4a-4b+c}=\frac{4x-4y+z}{9c}\left(3\right)\)
Từ (1);(2);(3) ta có dãy tỉ số=nhau:
\(\frac{x+2y+z}{9a}=\frac{2x+y-z}{9b}=\frac{4x-4y+z}{9c}\)
=>\(\frac{a}{x+2y+z}=\frac{b}{2x+y-z}=\frac{c}{4x-4y+z}\) (đpcm)
(*) bài này thiếu dữ kiện:" giả thiết các tỉ số đều có nghĩa" nhé,phải có dữ liệu đó mới suy ra đpcm được
\(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{x}{4a-4b+6}\) thì \(\dfrac{a}{x+2y+z}=\dfrac{b}{2x+y+z}=\dfrac{c}{4x-4y+z}\)
Giải:
\(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}=\dfrac{x+2y+z}{9a}\left(1\right)\)
\(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}=\dfrac{2x+y-z}{9b}\left(2\right)\)
\(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}=\dfrac{4x-4y+z}{9c}\left(3\right)\)
Từ \(\left(1\right);\left(2\right);\left(3\right)\Rightarrow\dfrac{x+2y+z}{9a}=\dfrac{2x+y-z}{9b}=\dfrac{4x-4y+z}{9c}\)hay
\(\dfrac{a}{x+2y+z}=\dfrac{b}{2z+y-z}=\dfrac{c}{4x-4y+z}\) cùng = 9
Bài này cũng không khó đâu. Áp dụng tính chất dãy tỷ số = nhau là ra đó b