cho hình chữ nhật ABCD có AB=mAD(m>0) qua A kẻ đường thẳng cắt đoạn BC và CD lần lượt tại M và N. CMR m^2/AB^2=m^2/AM^2+1/AN^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ A kẻ đường thẳng vuông góc với AN cắt CD tại E
Ta có AB=mAD nên \(\frac{AB}{AD}=m\)
Xét \(\Delta ABM\)và \(\Delta ADE\)có :
góc ABM = góc ADE =90
góc BAM =góc FAD (cùng phụ với góc DAN )
\(\Rightarrow\Delta ABM~\Delta ADF\left(g.g\right)\)\(\Rightarrow\frac{AM}{AF}=\frac{AB}{AD}=m\)\(\Rightarrow\frac{1}{AF}=\frac{m}{AM};\frac{1}{AD}=\frac{m}{AB}\)
Tam giác AFN VUÔNG TẠI A CÓ \(AD⊥FN\)\(\Rightarrow\frac{1}{AD^2}=\frac{1}{AF^2}+\frac{1}{AN^2}\)
HAY \(\left(\frac{m}{AB}\right)^2=\left(\frac{m}{AM}\right)^2+\frac{1}{AN^2}\Rightarrow\frac{m^2}{AB^2}=\frac{m^2}{AM^2}+\frac{1}{AN^2}\left(đpcm\right)\)
tham khảo :
https://lazi.vn/edu/exercise/582904/cho-hinh-thang-abcd-ab-cd-cheo-cat-nhau-tai-o-p
Hình thang ABCD (AB//CD) có: M là trung điểm AE, MN//AB//EF.
\(\Rightarrow\)N là trung điểm BF nên MN là đường trung bình của hình thang ABCD.
\(\Rightarrow MN=\dfrac{AB+EF}{2}=\dfrac{12+18}{2}=15\left(cm\right)\).
Hình thang MNCD (MN//CD) có: E là trung điểm MD, EF//MN//CD.
\(\Rightarrow\)F là trung điểm CD nên EF là đường trung bình của hình thang MNCD.
\(\Rightarrow EF=\dfrac{MN+CD}{2}\Rightarrow CD=2EF-MN=2.18-15=21\left(cm\right)\)