cho các số a, b, x, y # 0. CMR: (ax+by)2<(a2+b2)(x2+y2) -- dấu bằng xảy ra khi nào.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có a /b = x/y = a +x / b+ y
=> x chia hết cho a ; y chia hết cho b
x/y = cx / cy thì a/b = a+ x / b+ y ( c là một chữ số bất kì )
a-b+b-x-a+c/x+y-z=0/x+y-z=0
suy ra a-b=0 suy ra a=b
b-c=0 suy ra b=c
Cho x,y,z là các số nguyên tố khác 2 và các số thực a,b,c thỏa mãn dãy tỉ số bằng nhau a-b/x=b-c/y=a-c/z.CMR a=b=c
a) Vì x,y,z>0 nên a,b,c>0 (1)
Ta có: a+b-c=x+y+y+z-z-x=2y>0
=> a+b>c. Tương tự ta có b+c>a, c+a>b (2)
Từ (1) và (2) => Tồn tại tam giác mà các cạnh của nó có độ dài 3 cạnh là a,b,c
b) Vì a,b,c là độ dài 3 cạnh của 1 tam giác nên ta có a+b>c hay x+y+y+z>z+x => y>0
Tương tự: z,x>0
Vậy có các số dương x,y,z tm
a) Ta có: \(\dfrac{3+x}{7+y}=\dfrac{3}{7}\)
\(\Leftrightarrow\dfrac{x+3}{3}=\dfrac{y+7}{7}\)
mà x+y=20
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x+3}{3}=\dfrac{y+7}{7}=\dfrac{x+y+3+7}{3+7}=\dfrac{20+10}{10}=3\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x+3}{10}=3\\\dfrac{y+7}{7}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+3=30\\y+7=21\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=27\\y=14\end{matrix}\right.\)
Vậy: x=27; y=14
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{a-b}{x}=\frac{b-c}{y}=\frac{a-c}{z}=\frac{a-b+b-c-a+c}{x+y-z}=\frac{0}{x+y-z}=0\)
\(\Rightarrow\frac{a-b}{x}=0\Leftrightarrow a-b=0\Leftrightarrow a=b\)
\(\frac{b-c}{y}=0\Leftrightarrow b-c=0\Leftrightarrow b=c\)
\(\frac{a-c}{z}=0\Leftrightarrow a-c=0\Leftrightarrow a=c\)
\(\Rightarrow a=b=c\left(đpcm\right)\)
(ax+by)\(^{^2}\)\(\le\) (\(a^2\)+\(b^2\))(\(x^2\)+\(y^2\))
<=> \(a^2\)\(x^2\)+2axby+\(b^2\)\(y^2\)\(\le\)\(a^2\)\(x^2\)+\(a^2\)\(y^2\)+\(b^2\)\(x^2\)+\(b^2\)\(y^2\)
<=> 2axby\(\le\)\(a^2\)\(y^2\)+\(b^2\)\(x^2\)
<=>\(a^2\)\(y^2\)-2aybx+\(b^2\)\(x^2\)\(\ge\)0
<=> \(\left(ay-bx\right)^2\)\(\ge\)0(luôn đúng)
dấu = xảy ra khi ay-bx=0 <=> ay=bx
BDT Bunnhiacopxki
Với mọi số a;b;x;y ta có:
\(\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\)
dấu = xảy ra khi \(\Leftrightarrow\frac{a}{x}=\frac{b}{y}\)