Giải phương trình :
\(x^3-3x^2-8x+40-8\sqrt[4]{4x+4}=0\) (1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biến đổi VT và VP của phương trình ta có :
\(x^3-3x^2-8x+40=8\sqrt[4]{4x+4}\)
\(\Leftrightarrow x^3-3x^2+\left(-8\right)x+40=x^3-3x^2-8x+40\)
\(VP=8\left(4x+4\right)^{\frac{1}{4}}=\sqrt{2^7}\left(x+1\right)^{\frac{1}{4}}\)
\(x^3-3x^2-8x+40=8\sqrt[4]{4x+4}\)
\(\Leftrightarrow x^3-3x^2-8x+24=8\sqrt[4]{4x+4}-16\)
\(\Leftrightarrow\left(x-3\right)\left(x^2-8\right)=\frac{4096\left(4x+4\right)-65536}{8\sqrt[4]{4x+4}+16}\)
\(\Leftrightarrow\left(x-3\right)\left(x^2-8\right)=\frac{16384\left(x-3\right)}{8\sqrt[4]{4x+4}+16}\)
\(\Leftrightarrow\left(x-3\right)\left(x^2-8\right)-\frac{16384\left(x-3\right)}{8\sqrt[4]{4x+4}+16}=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2-8-\frac{16384}{8\sqrt[4]{4x+4}+16}\right)=0\)
Dễ thấy: \(x^2-8-\frac{16384}{8\sqrt[4]{4x+4}+16}=0\) vô nghiệm
Nên \(x-3=0\Rightarrow x=3\)
Dùng cốc cốc cũng chia sẽ cho mọi người thêm 1 cách giải khác,mặt dù nó không giải chi tiết ra :v
a: Ta có: \(x^2+3x+4=0\)
\(\text{Δ}=3^2-4\cdot1\cdot4=9-16=-7< 0\)
Do đó: Phương trình vô nghiệm
1.
\(x^4-6x^2-12x-8=0\)
\(\Leftrightarrow x^4-2x^2+1-4x^2-12x-9=0\)
\(\Leftrightarrow\left(x^2-1\right)^2=\left(2x+3\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=2x+3\\x^2-1=-2x-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\x^2+2x+2=0\end{matrix}\right.\)
\(\Leftrightarrow x=1\pm\sqrt{5}\)
3.
ĐK: \(x\ge-9\)
\(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)
\(\Leftrightarrow\left(x^2-x+1\right)\left(\sqrt{x+9}+x^2-9\right)=0\)
\(\Leftrightarrow\sqrt{x+9}+x^2-9=0\left(1\right)\)
Đặt \(\sqrt{x+9}=t\left(t\ge0\right)\Rightarrow9=t^2-x\)
\(\left(1\right)\Leftrightarrow t+x^2+x-t^2=0\)
\(\Leftrightarrow\left(x+t\right)\left(x-t+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-t\\x=t-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{x+9}\\x=\sqrt{x+9}-1\end{matrix}\right.\)
\(\Leftrightarrow...\)
a) ĐKXĐ: \(x\ge0\)
Ta có: \(3\sqrt{18x}-5\sqrt{8x}+4\sqrt{50x}=38\)
\(\Leftrightarrow9\sqrt{2x}-10\sqrt{2x}+20\sqrt{2x}=38\)
\(\Leftrightarrow19\sqrt{2x}=38\)
\(\Leftrightarrow\sqrt{2x}=2\)
\(\Leftrightarrow2x=4\)
hay x=2(thỏa ĐK)
b) ĐKXĐ: \(x\ge0\)
Ta có: \(3\sqrt{12x}-2\sqrt{27x}+4\sqrt{3x}=8\)
\(\Leftrightarrow6\sqrt{3x}-6\sqrt{3x}+4\sqrt{3x}=8\)
\(\Leftrightarrow\sqrt{3x}=2\)
\(\Leftrightarrow3x=4\)
hay \(x=\dfrac{4}{3}\)
c) ĐKXĐ: \(x\ge5\)
Ta có: \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\)
\(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\dfrac{1}{3}\cdot3\sqrt{x-5}=4\)
\(\Leftrightarrow2\sqrt{x-5}=4\)
\(\Leftrightarrow\sqrt{x-5}=2\)
\(\Leftrightarrow x-5=4\)
hay x=9
a)
\(3.3\sqrt{2x}-5.2\sqrt{2x}+4.5.\sqrt{2x}=38\\ \Leftrightarrow19\sqrt{2x}=38\\ \Leftrightarrow\sqrt{2x}=2\\ \Leftrightarrow x=2\)
b)
\(3.2.\sqrt{3x}-2.3.\sqrt{3x}+4.\sqrt{3x}=8\\ \Leftrightarrow4\sqrt{3x}=8\\ \Leftrightarrow\sqrt{3x}=2\\\Leftrightarrow x=\dfrac{2^2}{3}=\dfrac{4}{3} \)
c)
\(\sqrt{4\left(x-5\right)}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9\left(x-5\right)}=4\\ \Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\\ \Leftrightarrow2\sqrt{x-5}=4\\ \Leftrightarrow x-5=4\\ \Leftrightarrow x=9\)
\(c,\frac{x^2+\sqrt{3}}{x+\sqrt{x^2+\sqrt{3}}}+\frac{x^2-\sqrt{3}}{x+\sqrt{x^2+\sqrt{3}}}=x\)
\(\Rightarrow\frac{x^2}{x+\sqrt{x^2+\sqrt{3}}}=x\)
\(\Rightarrow2x^2=x^2+x\sqrt{x^2+\sqrt{3}}\)
\(\Rightarrow x^2=x\sqrt{x^2+\sqrt{3}}\)
\(\Rightarrow x^4=x^3+x\sqrt{3}\)
\(\Rightarrow x\left(x^2-x+\sqrt{3}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^2-x+\sqrt{3}=0\end{cases}}\)
1.
ĐKXĐ: \(x\ge-\dfrac{1}{3}\)
\(\Leftrightarrow3x^2-3x+\left(x+1-\sqrt{3x+1}\right)+\left(x+2-\sqrt{5x+4}\right)=0\)
\(\Leftrightarrow3\left(x^2-x\right)+\dfrac{x^2-x}{x+1+\sqrt{3x+1}}+\dfrac{x^2-x}{x+2+\sqrt{5x+4}}=0\)
\(\Leftrightarrow\left(x^2-x\right)\left(3+\dfrac{1}{x+1+\sqrt{3x+1}}+\dfrac{1}{x+2+\sqrt{5x+4}}\right)=0\)
\(\Leftrightarrow x^2-x=0\)
\(\Leftrightarrow...\)
2.
Đặt \(\left\{{}\begin{matrix}2x=a\\\sqrt[3]{2-8x^3}=b\end{matrix}\right.\)
Ta được hệ:
\(\left\{{}\begin{matrix}\left(2a-1\right)b=a\\a^3+b^3=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=2ab\\\left(a+b\right)^3-3ab\left(a+b\right)=2\end{matrix}\right.\)
\(\Rightarrow8\left(ab\right)^3-6\left(ab\right)^2=2\)
\(\Leftrightarrow\left(ab-1\right)\left[4\left(ab\right)^2+ab+1\right]=0\)
\(\Leftrightarrow ab=1\Rightarrow a+b=2\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=2\\ab=1\end{matrix}\right.\) \(\Leftrightarrow a=b=1\)
\(\Rightarrow2x=1\Rightarrow x=\dfrac{1}{2}\)
a: \(x^3+8x=5x^2+4\)
=>\(x^3-5x^2+8x-4=0\)
=>\(x^3-x^2-4x^2+4x+4x-4=0\)
=>\(x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)=0\)
=>\(\left(x-1\right)\left(x^2-4x+4\right)=0\)
=>\(\left(x-1\right)\left(x-2\right)^2=0\)
=>\(\left[{}\begin{matrix}x-1=0\\\left(x-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
2: \(x^3+3x^2=x+6\)
=>\(x^3+3x^2-x-6=0\)
=>\(x^3+2x^2+x^2+2x-3x-6=0\)
=>\(x^2\cdot\left(x+2\right)+x\left(x+2\right)-3\left(x+2\right)=0\)
=>\(\left(x+2\right)\left(x^2+x-3\right)=0\)
=>\(\left[{}\begin{matrix}x+2=0\\x^2+x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{-1+\sqrt{13}}{2}\\x=\dfrac{-1-\sqrt{13}}{2}\end{matrix}\right.\)
3: ĐKXĐ: x>=0
\(2x+3\sqrt{x}=1\)
=>\(2x+3\sqrt{x}-1=0\)
=>\(x+\dfrac{3}{2}\sqrt{x}-\dfrac{1}{2}=0\)
=>\(\left(\sqrt{x}\right)^2+2\cdot\sqrt{x}\cdot\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{17}{16}=0\)
=>\(\left(\sqrt{x}+\dfrac{3}{4}\right)^2=\dfrac{17}{16}\)
=>\(\left[{}\begin{matrix}\sqrt{x}+\dfrac{3}{4}=-\dfrac{\sqrt{17}}{4}\\\sqrt{x}+\dfrac{3}{4}=\dfrac{\sqrt{17}}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=\dfrac{\sqrt{17}-3}{4}\left(nhận\right)\\\sqrt{x}=\dfrac{-\sqrt{17}-3}{4}\left(loại\right)\end{matrix}\right.\)
=>\(x=\dfrac{13-3\sqrt{17}}{8}\left(nhận\right)\)
4: \(x^4+4x^2+1=3x^3+3x\)
=>\(x^4-3x^3+4x^2-3x+1=0\)
=>\(x^4-x^3-2x^3+2x^2+2x^2-2x-x+1=0\)
=>\(x^3\left(x-1\right)-2x^2\left(x-1\right)+2x\left(x-1\right)-\left(x-1\right)=0\)
=>\(\left(x-1\right)\left(x^3-2x^2+2x-1\right)=0\)
=>\(\left(x-1\right)\left(x^3-x^2-x^2+x+x-1\right)=0\)
=>\(\left(x-1\right)^2\cdot\left(x^2-x+1\right)=0\)
=>(x-1)^2=0
=>x-1=0
=>x=1
a.
\(x^3+8x=5x^2+4\)
\(\Leftrightarrow x^3-5x^2+8x-4=0\)
\(\Leftrightarrow\left(x^3-4x^2+4x\right)-\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow x\left(x-2\right)^2-\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
b.
\(x^3+3x^2-x-6=0\)
\(\Leftrightarrow\left(x^3+x^2-3x\right)+\left(2x^2+2x-6\right)=0\)
\(\Leftrightarrow x\left(x^2+x-3\right)+2\left(x^2+x-3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2+x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{-1\pm\sqrt{13}}{2}\end{matrix}\right.\)
Điều kiện : \(x\ge-1\)
Xét hàm số trên [\(-1;+\infty\) ) : \(f\left(x\right)=x^3-3x^2-8x+40\)
\(g\left(x\right)=8\sqrt[4]{4x+4}\)
Theo bất đẳng thức Cauchy, ta có :
\(g\left(x\right)=\sqrt[4]{2^4.2^4.2^4\left(5x+4\right)}\le\frac{2^4+2^4+2^4+\left(4x+4\right)}{4}=x+13\) (2)
Dấu bằng ở (2) xảy ra khi và chỉ khi x = 3
Mặt khác :
\(f\left(x\right)-\left(x+13\right)=x^3-3x^2-9x+27=\left(x-3\right)^2\left(x+3\right)\ge0\) với mọi \(x\ge-1\) (3)
Dấu bằng ở (3) xảy ra khi và chỉ khi x = 3. Ta có :
\(\left(1\right)\Leftrightarrow f\left(x\right)=g\left(x\right)\) (4)
Vậy (4) có nghĩa là dấu bằng ở (2) và (3) đồng thời xảy ra,hay x = 3 (thỏa mãn điều kiện)
Phương trình đã cho có nghiệm duy nhất x = 3