K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2021

a)p(x)=x7-80x6+80x5-80x4+.........+80+15

=x7-(79+1)6+(79+1)5-(79+1)4+.........+(79+1)x+15

mà x=79

=> x7-(x+1)6+(x+1)5-(x+1)4+..........+(x+1)x+15

=x7-x7+x6-x6+x5-x5+........+x2+x+15

=x+15

=79+15

=94

23 tháng 8 2015

\(C=x^7-80x^6+80x^5-80x^4+80x^3-80x^2+80x+15\)

Ta có x=79 => 80=79+1=x+1

\(C=x^7-\left(x+1\right)x^6+\left(x+1\right)x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x+15\)

\(C=x^7-x^7-x^6+x^6+x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x+15\)

\(C=x+15=79+15=94\)

5 tháng 7 2017

Có : x = 79

=> x + 1 = 80

Xét P(x) , có :

\(P\left(x\right)=x^7-80x^6+80x^5-80x^4+....+80x+15\)

\(P\left(x\right)=x^7-\left(x+1\right)x^6+\left(x+1\right)x^5-\left(x+1\right)x^4+....+\left(x+1\right)x+15\)

\(P\left(x\right)=x^7-x^7-x^6+x^6+x^5-x^5-x^4+....+x^2+x+15\)

\(P\left(x\right)=x+15\)

\(P\left(79\right)=79+15=94\)

Thay x+1=80 ta đc:

\(P\left(x\right)=x^7-\left(x+1\right)x^6+\left(x+1\right)x^5-\left(x+1\right)x^4+...+\left(x+1\right)x+15\)

\(=x^7-x^7-x^6+x^6+x^5+...+x^2+x+15\)

\(79+15=94\)

13 tháng 12 2019

\(Ta \)  \(có \) \(:\)

\(x = 79 \)\(\Rightarrow\)\(x + 1 = 80\)

\(Thay \)  \(x + 1 = 80 \) \(vào \)  \(P(x)\) \(ta\) \(được :\)

\(P ( x ) = x ^7 - ( x + 1 )x ^6 + ( x + 1 )x^5\)\(- ( x + 1 )x ^4\)\(+ ...+ ( x + 1 )x + 15\)

\(P ( x ) = x ^7 - x ^7- x^6 + x^6 + x^5 - x^ 5\)\(- x ^4 + x ^4 + ... - x^ 2 + x ^2 + x + 15\)

\(P ( x ) = x + 15\)

\(Thay x = 79 vào P ( x ) ta được :\)

\(P ( x ) = 79 + 15 = 94\)

12 tháng 6 2016

Dễ thấy 80=79+1=x+1

Thay vào P(x) ta có:

\(P\left(x\right)=x^7-\left(x+1\right)x^6+\left(x+1\right)x^5-\left(x+1\right)x^4+....+\left(x+1\right)x+15\)

\(P\left(x\right)=x^7-x^7-x^6+x^6+x^5-x^5-x^4+....+x^2+x+15\)

\(P\left(x\right)=x+15=79+15=94\)

4 tháng 7 2017

\(C=x^7-80x^6+80x^5-80x^4+80x^3-80x^2+80x+15\)

\(=x^7-79x^6-x^6+79x^5+x^5-79x^4-x^4+79x^3+x^3-79x^2-x^2+79x+x-79+94\)

\(=x^6\left(x-79\right)-x^5\left(x-79\right)+x^4\left(x-79\right)-x^3\left(x-79\right)+x^2\left(x-79\right)-x\left(x-79\right)+\left(x-79\right)+94\)

\(=\left(x^6-x^5+x^4-x^3+x^2-x+1\right)\left(x-79\right)+94\)

Thay x = 79 \(\Rightarrow C=94\)

Vậy C = 94 khi x = 79

4 tháng 7 2017

Thay x = 79 vào C ta có:

C =\(79^7-80.79^6+80.79^5-80.79^4+80.79^3-80.79^2+80.79+15\)

C = \(79^7-\left(79+1\right).79^6+\left(79+1\right).79^5-\left(79+1\right).79^4+\left(79+1\right).79^3-\left(79+1\right).79^2+\left(79+1\right).79+15\)

C = \(79^7-79^7+79^6-79^6+79^5-79^5+79^4-79^4+79^3-79^3+79^2-79^2+79+15\)

C = 79 + 15 = 94

3 tháng 9 2018

\(Q_{\left(x\right)}=x^{14}-10x^{13}+10x^{12}-10x^{11}+...+10x^2-10x+10\)

\(=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-\left(x+1\right)x^{11}+..+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)

\(=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-x^{12}-x^{11}+...+x^3+x^2-x^2-x+x+1\)

\(=1\)

7 tháng 7 2020

\(a.P(x)=x^7-80x^6+80x^5-80x^4+....+80x+15\)

\(=x^7-79x^6-x^6+79x^5+x^5-79x^4-....-x^2+79x+x+15\)

\(=x^6(x-79)-x^5(x-79)+x^4(x-79)-....-x(x-79)+x+15\)

\(=(x-79)(x^6-x^5+x^4-....-x)+x+15\)

Thay x = 79 vào biểu thức trên , ta có

\(P(79)=(79-79)(79^6-79^5+79^4-...-79)+79+15\)

\(=0+79+15\)

\(=94\)

Vậy \(P(x)=94\)khi x = 79

\(b.Q(x)=x^{14}-10x^{13}+10x^{12}-.....+10x^2-10x+10\)

\(=x^{14}-9x^{13}-x^{13}+9x^{12}+.....-x^3+9x^2+x^2-9x-x+10\)

\(=x^{13}(x-9)-x^{12}(x-9)+.....-x^2(x-9)+x(x-9)-x+10\)

\(=(x-9)(x^{13}-x^{12}+.....-x^2+x)-x+10\)

Thay x = 9 vào biểu thức trên , ta có

\(Q(9)=(9-9)(9^{13}-9^{12}+.....-9^2+9)-9+10\)

\(=0-9+10\)

\(=1\)

Vậy \(Q(x)=1\)khi x = 9

\(c.R(x)=x^4-17x^3+17x^2-17x+20\)

\(=x^4-16x^3-x^3+16x^2+x^2-16x-x+20\)

\(=x^3(x-16)-x^2(x-16)+x(x-16)-x+20\)

\(=(x-16)(x^3-x^2+x)-x+20\)

Thay x = 16 vào biểu thức trên , ta có

\(R(16)=(16-16)(16^3-16^2+16)-16+20\)

\(=0-16+20\)

\(=4\)

Vậy \(R(x)=4\)khi x = 16

\(d.S(x)=x^{10}-13x^9+13x^8-13x^7+.....+13x^2-13x+10\)

\(=x^{10}-12x^9-x^9+12x^8+.....+x^2-12x-x+10\)

\(=x^9(x-12)-x^8(x-12)+....+x(x-12)-x+10\)

\(=(x-12)(x^9-x^8+....+x)-x+10\)

Thay x = 12 vào biểu thức trên , ta có

\(S(12)=(12-12)(12^9-12^8+....+12)-12+10\)

\(=0-12+10\)

\(=-2\)

Vậy \(S(x)=-2\)khi x = 12

Hình như đây là toán lớp 7 có trong phần trắc nghiệm của thi HSG huyện

Chúc bạn học tốt , nhớ kết bạn với mình

24 tháng 5 2019

P(x)=x7−80x6+80x5−8x4+...+80x+15

⇒P(x)=x7−(x+1).x6+(x+1).x5+...+(x+1)x+15

⇒P(x)=x7−x7−x6+x6+x5−x5+...−x3−x2+x2+x+15

⇒P(x)=x+15 (1)

Thay x=79 vào (1),ta được:

P(79)=79+15=84

~ Học tốt ~