K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2016

\(=3.\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{97.100}\right)=3.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)\)

\(=3.\left(1-\frac{1}{100}\right)=\frac{297}{100}\)

29 tháng 6 2017

\(A=\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+\frac{1}{13.16}+\frac{1}{16.19}\)

\(A=\frac{1}{3}\cdot\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+....+\frac{1}{16}-\frac{1}{19}\right)\)

\(A=\frac{1}{3}\cdot\left(1-\frac{1}{19}\right)\)

\(A=\frac{1}{3}\cdot\frac{18}{19}=\frac{6}{19}\)

\(B=\frac{1}{32}+\frac{1}{96}+\frac{1}{192}+\frac{1}{320}+\frac{1}{480}\)

\(B=\frac{1}{4\cdot8}+\frac{1}{8\cdot12}+\frac{1}{12\cdot16}+\frac{1}{16\cdot20}+\frac{1}{20\cdot24}\)

\(B=\frac{1}{4}\cdot\left(\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{12}+\frac{1}{12}-\frac{1}{16}+\frac{1}{16}-\frac{1}{20}+\frac{1}{20}-\frac{1}{24}\right)\)

\(B=\frac{1}{4}\cdot\left(\frac{1}{4}-\frac{1}{24}\right)\)

\(B=\frac{1}{4}\cdot\frac{5}{24}=\frac{5}{96}\)

29 tháng 6 2017

\(A=\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+\frac{1}{13.16}+\frac{1}{16.19}\)

\(A=\frac{1}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{16}-\frac{1}{19}\right)\)

\(A=\frac{1}{3}\left(1-\frac{1}{19}\right)\)

\(A=\frac{1}{3}.\frac{18}{19}\)

\(A=\frac{6}{19}\)

\(B=\frac{1}{32}+\frac{1}{96}+\frac{1}{192}+\frac{1}{320}+\frac{1}{480}\)

\(B=\frac{1}{4.8}+\frac{1}{8.12}+\frac{1}{12.16}+\frac{1}{16.20}+\frac{1}{20.24}\)

\(B=\frac{1}{4}\left(\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{12}+...+\frac{1}{20}-\frac{1}{24}\right)\)

\(B=\frac{1}{2}\left(\frac{1}{4}-\frac{1}{24}\right)\)

\(B=\frac{1}{2}.\frac{5}{24}\)

\(B=\frac{5}{48}\)

28 tháng 6 2017

đây là toán lớp 5 cơ mà

a)A=\(\frac{1}{1x4}\)+\(\frac{1}{4x7}\)+...+\(\frac{1}{16x19}\)

A=\(\frac{1}{3}\)x3x(\(\frac{1}{1.4}\)+\(\frac{1}{4.7}\)+.......+\(\frac{1}{16.19}\)

A=\(\frac{1}{3}\)x(\(\frac{3}{1.4}\)+\(\frac{3}{4.7}\)+............+\(\frac{3}{16.19}\))

A=\(\frac{1}{3}\)x(1-1/4+1/4-1/7+......+1/13-1/16+1/16-1/19)

A=\(\frac{1}{3}\)x(1-\(\frac{1}{19}\))

A=\(\frac{1}{3}\)x\(\frac{18}{19}\)

A=\(\frac{6}{19}\)

28 tháng 6 2017

câu b tương tự tách mẫu ra thôi

23 tháng 4 2016
Hình như có sai đề~~~
16 tháng 7 2015

  3/1.4 + 3/4.7 + .. +3/13.16

= 1/1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + 1/10 - 1/13 + 1/13 - 1/16

= 1/1 - 1/16

= 15/16

16 tháng 7 2015

\(=\frac{15}{16}\)

đúng cho mk nha Minh Thư Nguyễn

a)\(\dfrac{1}{2^2}<\dfrac{1}{1.2}\)

\(\dfrac{1}{3^3}<\dfrac{1}{2.3}\)

\(...\)

\(\dfrac{1}{8^2}<\dfrac{1}{7.8}\)

Vậy ta có biểu thức:

\(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{8^2}<\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{7.8}\)

\(B= 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{7}-\dfrac{1}{8}\)

\(B<1-\dfrac{1}{8}=\dfrac{7}{8}<1\)

Vậy B < 1 (đpcm)

 

 

 

Giải:

a) Ta có:

1/22=1/2.2 < 1/1.2

1/32=1/3.3 < 1/2.3

1/42=1/4.4 < 1/3.4

1/52=1/5.5 < 1/4.5

1/62=1/6.6 < 1/5.6

1/72=1/7.7 < 1/6.7

1/82=1/8.8 <1/7.8

⇒B<1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8

   B<1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8

   B<1/1-1/8

   B<7/8

mà 7/8<1

⇒B<7/8<1

⇒B<1

b)S=3/1.4+3/4.7+3/7.10+...+3/40.43+3/43.46

   S=1/1-1/4+1/4-1/7+1/7-1/10+...+1/40-1/43+1/43-1/46

   S=1/1-1/46

   S=45/46

Vì 45/46<1 nên S<1

Vậy S<1

Chúc bạn học tốt!

28 tháng 11 2021

TK

S=1.4+2.5+3.6+4.7+....+n.(n+3) S = 1. ( 2 + 2 ) + 2. ( 3 + 2 ) + 3. ( 4 + 2 ) + . . . + n . [ ( n + 1 ) + 2 ] S = 1.2 + 2.3 + 3.4 + . . . . + n . ( n + 1 ) + ( 1.2 + 2.2 + 3.2 + . . . . + n .2 ) Đặt A = 1.2 + 2.3 + 3.4 + . . . . + n . ( n + 1 ) 3 A = 1.2.3 + 2.3. ( 4 − 1 ) + . . . . + n . ( n + 1 ) . [ ( n + 2 ) − ( n − 1 ) 3 A = 1.2.3 + 2.3.4 − 1.2.3 + . . . . + n . ( n + 1 ) . ( n + 2 ) − ( n − 1 ) . n . ( n + 1 ) 3 A = n . ( n + 1 ) . ( n + 2 ) A = [ n . ( n + 1 ) . ( n + 2 ) ] : 3 S = [ n . ( n + 1 ) . ( n + 2 ) ] : 3 + 2. ( 1 + 2 + 3 + . . . + n ) S = [ n . ( n + 1 ) . ( n + 2 ) ] : 3 + 2. n . ( n + 1 ) : 2 S = n . ( n + 1 ) . ( n + 2 ) : 3 + n . ( n + 1 ) S = n . ( n + 1 ) . [ ( n + 2 ) : 3 + 1 )

D = 1^2 + 2^2 + 3^2 + ... + n^2 
   = 1.( 2 - 1 ) + 2.( 3-1 ) + 3.( 4-1 ) + .... + n.[ ( n+ 1) - 1 ]
   = 1.2 - 1 + 2.3 - 2 + 3.4 - 3 + .... + n.( n+1 ) - n

 


   = [ 1.2 + 2.3 + 3.4 + ..... + n.( n + 1 ) ] - ( 1 + 2 + 3 + .... + n ) 
   = { [ n.( n+1 ).( n+2 )] /3 } - { [ n.( n+1)] /2 } 
   = { n(n+1)(2n+1) }/ 6 
Vậy......... 

28 tháng 11 2021

TK

undefined

x/1.4+x/4.7+x/7.10+x/10.13+x/13.16=5/2

=>x/3(1/4-1/7+1/7-1/10+1/10-1/13+1/13-1/16)=5/2

=>x/3.(1/4-1/16)=5/2

=>x/3.3/16=5/2

=>x/3=5/2:3/16

=>x/3=40/3

=>x=40

Vậy x=40

30 tháng 4 2019

x/1.4 + x/4.7 + x/7.10 + x/10.13 + x/13.16 = 5/6

=> x.1/3.(3/1.4 + 3/4.7 + 3/7.10 + 3/10.13 + 3/13.16) = 5/6

=> x.1/3.(1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + 1/10 - 1/13 + 1/13 - 1/16) = 5/6

=> x.1/3.(1 - 1/16) = 5/6

=> x.1/3.15/16 = 5/6

=> x.1/3 = 5/6 : 15/16

=> x.1/3 = 8/9

=> x = 8/9 : 1/3

=> x = 8/3

2 tháng 9 2023

x/1.4+x/4.7+x/7.10+x/10.13+x/13.16=5/2

=>x/3(1/4-1/7+1/7-1/10+1/10-1/13+1/13-1/16)=5/2

=>x/3.(1/4-1/16)=5/2

=>x/3.3/16=5/2

=>x/3=5/2:3/16

=>x/3=40/3

=>x=40

Vậy x=40