K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2016

\(I=lg\left(\sqrt{81^{\log_35}+27^{\log_936}}+3^{2\log_971}\right)=lg\left(\sqrt{\left(3^4\right)^{\log_35}+\left(3^3\right)^{\log_{3^2}6^2}}+3^{2\log_{3^2}71}\right)\)

   \(=lg\left(\sqrt{3^{\log_35^4}+3^{\log_36^3}}+3^{\log_371}\right)=lg\left(\sqrt{5^4+6^3}+71\right)\)

  \(=lg\left(29+71\right)=lg100=2\)

NV
12 tháng 1

\(log_5125=log_55^3=3\)

\(log_6216=log_66^3=3\)

\(log_{10}\dfrac{1}{10000}=log_{10}10^{-4}=-4\)

\(log\sqrt{1000}=log_{10}10^{\dfrac{3}{2}}=\dfrac{3}{2}\)

\(81^{log_35}=3^{3log_35}=3^{log_3125}=125\)

\(125^{log_52}=5^{3log_52}=5^{log_58}=8\)

\(\left(\dfrac{1}{49}\right)^{log_7\dfrac{1}{8}}=7^{-2log_7\dfrac{1}{8}}=7^{log_764}=64\)

\(\left(\dfrac{1}{625}\right)^{log_52}=5^{-4log_52}=5^{log_5\dfrac{1}{16}}=\dfrac{1}{16}\)

a: \(A=2^{\dfrac{1}{3}}\cdot2^{\dfrac{2}{3}}=2^{\dfrac{1}{3}+\dfrac{2}{3}}=2^{\dfrac{3}{3}}=2^1=2\)

b: \(B=36^{\dfrac{3}{2}}=\left(6^2\right)^{\dfrac{3}{2}}=6^{2\cdot\dfrac{3}{2}}=6^3=216\)

c: \(C=36^{\dfrac{3}{2}}\cdot\left(\dfrac{1}{6}\right)^2=\left(6^2\right)^{\dfrac{3}{2}}\cdot\dfrac{1}{6^2}=\dfrac{6^{2\cdot\dfrac{3}{2}}}{6^2}=\dfrac{6^3}{6^2}=6\)

d: \(D=\sqrt{81}\cdot\left(\dfrac{1}{3}\right)^2=9\cdot\dfrac{1}{3^2}=9\cdot\dfrac{1}{9}=1\)

e: \(E=\left(3+2\sqrt{2}\right)^{50}\cdot\left(3-2\sqrt{2}\right)^{50}\)

\(=\left[\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)\right]^{50}\)

\(=\left(9-8\right)^{50}=1^{50}=1\)

f: \(F=120^{\sqrt{5}+1}\cdot120^{3-\sqrt{5}}\)

\(=120^{\sqrt{5}+1+3-\sqrt{5}}=120^4\)

g: \(G=\left(3+2\sqrt{2}\right)^{2019}\cdot\left(3\sqrt{2}-4\right)^{2018}\)

\(=\left(3+2\sqrt{2}\right)^{2018}\cdot\left(3\sqrt{2}-4\right)^{2018}\cdot\left(3+2\sqrt{2}\right)\)

\(=\left[\left(3+2\sqrt{2}\right)\left(3\sqrt{2}-4\right)\right]^{2018}\left(3+2\sqrt{2}\right)\)

\(=\left(9\sqrt{2}-12+12-8\sqrt{2}\right)^{2018}\cdot\left(3+2\sqrt{2}\right)\)

\(=\left(\sqrt{2}\right)^{2018}\cdot\left(3+2\sqrt{2}\right)=2^{\dfrac{1}{2}\cdot2018}\cdot\left(3+2\sqrt{2}\right)\)

\(=2^{1009}\cdot\left(3+2\sqrt{2}\right)\)

15 tháng 9 2021

\(\dfrac{2}{3}\sqrt{27}-\dfrac{9}{2}\sqrt{\dfrac{16}{81}}+\sqrt{\left(1-\sqrt{3}\right)^2}\)

\(=\dfrac{2}{3}\sqrt{3}-\dfrac{9}{2}.\dfrac{4}{9}+\left(1-\sqrt{3}\right)\)

\(=\dfrac{2\sqrt{3}}{3}-2+1-\sqrt{3}\)

\(=-\dfrac{\sqrt{3}}{3}-1\)

\(=-\dfrac{3+\sqrt{3}}{3}\)

4 tháng 5 2016

Ta có:

\(\left(\frac{1}{4}\right)^{-\frac{3}{2}}=8\) ;

\(2\left(\frac{125}{27}\right)^{-\frac{2}{3}}=2.\frac{9}{25}=\frac{18}{25}\) ;

\(\left(\sqrt{6}+\sqrt{2}\right)\sqrt{2-\sqrt{3}}=2\Rightarrow2^{\left(\sqrt{6}+\sqrt{2}\right)\sqrt{2-\sqrt{3}}}=2^2=4\)

\(\Rightarrow M=8-\frac{18}{25}+4=4\frac{18}{25}\)

4 tháng 5 2016

Ta có \(\left(\sqrt{6}+\sqrt{2}\right)\sqrt{2-\sqrt{3}}=\left(\sqrt{3}+1\right)\sqrt{4-2\sqrt{3}}=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)=2\)

Nên \(B=2^{2\left(-\frac{3}{2}\right)}-2\left(\frac{5}{3}\right)^{3\left(-\frac{2}{3}\right)}+2^2=2^3-2\left(\frac{3}{5}\right)^2+4=\frac{282}{25}\)

a) Ta có: \(\left(7\sqrt{48}+3\sqrt{27}-2\sqrt{12}\right)\cdot\sqrt{3}\)

\(=\left(7\cdot4\sqrt{3}+3\cdot3\sqrt{3}-2\cdot2\sqrt{3}\right)\cdot\sqrt{3}\)

\(=33\sqrt{3}\cdot\sqrt{3}\)

=99

b) Ta có: \(\left(12\sqrt{50}-8\sqrt{200}+7\sqrt{450}\right):\sqrt{10}\)

\(=\left(12\cdot5\sqrt{2}-8\cdot10\sqrt{2}+7\cdot15\sqrt{2}\right):\sqrt{10}\)

\(=\dfrac{85\sqrt{2}}{\sqrt{10}}=\dfrac{85}{\sqrt{5}}=17\sqrt{5}\)

c) Ta có: \(\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{1}{4}\sqrt{8}\right)\cdot3\sqrt{6}\)

\(=\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{1}{4}\cdot2\sqrt{2}\right)\cdot3\sqrt{6}\)

\(=\left(2\sqrt{6}-4\sqrt{3}+3\sqrt{2}\right)\cdot3\sqrt{6}\)

\(=36-36\sqrt{2}+18\sqrt{3}\)

d) Ta có: \(3\sqrt{15\sqrt{50}}+5\sqrt{24\sqrt{8}}-4\sqrt{12\sqrt{32}}\)

\(=3\cdot\sqrt{75\sqrt{2}}+5\cdot\sqrt{48\sqrt{2}}-4\sqrt{48\sqrt{2}}\)

\(=3\cdot5\sqrt{2}\cdot\sqrt{\sqrt{2}}+4\sqrt{3}\sqrt{\sqrt{2}}\)

\(=15\sqrt{\sqrt{8}}+4\sqrt{\sqrt{18}}\)

2 tháng 7 2021

a,=\(\left(28\sqrt{3}+9\sqrt{3}-4\sqrt{3}\right).\sqrt{3}\)

   \(=28.3+9.3-4.3=99\)

b,\(=\left(60\sqrt{2}-80\sqrt{2}+175\sqrt{2}\right):\sqrt{10}\)

  \(=155\sqrt{2}:\sqrt{10}=\dfrac{155}{\sqrt{5}}\)

4 tháng 9 2023

a) Để tính giá trị của biểu thức P=(x^3+12x−9)^{2005}=(√3+12√−9)^{2005} với x=3√4(√5+1)−3√4(√5−1). Đầu tiên, ta thay x bằng giá trị đã cho vào biểu thức P: P=(3√4(√5+1)−3√4(√5−1))^3+12(3√4(√5+1)−3√4(√5−1))−9)^{2005} Tiếp theo, ta thực hiện các phép tính để đơn giản hóa biểu thức: P=(4(5+1)^{1/2}−4(5−1)^{1/2})^3+12(4(5+1)^{1/2}−4(5−1)^{1/2})−9)^{2005} =(4√6−4√4)^3+12(4√6−4√4)−9)^{2005} =(4√6−8)^3+12(4√6−8)−9)^{2005} =(64√6−192+96√6−96−9)^{2005} =(160√6−297)^{2005} ≈ 1.332 × 10^3975

b) Để tính giá trị của biểu thức Q=x^3+ax+b=√3+√a+√b^2+√a^3+√3+√a−√b^2+√a^3 với x=3√−b^2+√b^2/4+a^3/(27+3√−b^2−√b^2/4+a^3/27). Tương tự như trên, ta thay x bằng giá trị đã cho vào biểu thức Q: Q=(3√−b^2+√b^2/4+a^3/(27+3√−b^2−√b^2/4+a^3/27))^3+a(3√−b^2+√b^2/4+a^3/(27+3√−b^2−√b^2/4+a^3/27))+b Tiếp theo, ta thực hiện các phép tính để đơn giản hóa biểu thức: Q=(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))^3+a(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))+b =−b^3+3√b^2/4+a^3/(27−3b√b^2/4+a^3/(27))+a(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))+b =−b^3+3√b^2/4+a^3/(27−3b√b^2/4+a^3/(27))+a(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))+b =−b^3+3√b^2/4+a^3/(27−3b√b^2/4+a^3/(27))+a(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))+b =−b^3+3√b^2/4+a^3/(27−3b√b^2/4+a^3/(27))+a(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))+b ≈ −b^3+3√b^2/4+a^3/(27−3b√b^2/4+a^3/(27))+a(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))+b

18 tháng 8 2023

a) \(\sqrt[4]{\dfrac{1}{16}}=\dfrac{1}{2}\)

b) \(\left(\sqrt[6]{8}\right)^2=\sqrt[\dfrac{6}{2}]{8}=\sqrt[3]{8}=2\)

c) \(\sqrt[4]{3}\cdot\sqrt[4]{27}=\sqrt[4]{3\cdot27}=\sqrt[4]{81}=3\)