Giải phương trình :
\(\sqrt{2^x\sqrt[3]{4^x.}\sqrt[3x]{0.123}}=4\sqrt[3]{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ĐK: \(x\le-1,x\ge3\)
\(pt\Leftrightarrow2\left(x^2-2x-3\right)+\sqrt{x^2-2x-3}-3=0\)
\(\Leftrightarrow\left(2\sqrt{x^2-2x-3}+3\right).\left(\sqrt{x^2-2x-3}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-2x-3}=-\dfrac{3}{2}\left(l\right)\\\sqrt{x^2-2x-3}=1\end{matrix}\right.\)
\(\Leftrightarrow x^2-2x-3=1\)
\(\Leftrightarrow x^2-2x-4=0\)
\(\Leftrightarrow x=1\pm\sqrt{5}\left(tm\right)\)
b, ĐK: \(-2\le x\le2\)
Đặt \(\sqrt{2+x}-2\sqrt{2-x}=t\Rightarrow t^2=10-3x-4\sqrt{4-x^2}\)
Khi đó phương trình tương đương:
\(3t-t^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2+x}-2\sqrt{2-x}=0\\\sqrt{2+x}-2\sqrt{2-x}=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2+x=8-4x\\2+x=17-4x+12\sqrt{2-x}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\left(tm\right)\\5x-15=12\sqrt{2-x}\left(1\right)\end{matrix}\right.\)
Vì \(-2\le x\le2\Rightarrow5x-15< 0\Rightarrow\left(1\right)\) vô nghiệm
Vậy phương trình đã cho có nghiệm \(x=\dfrac{6}{5}\)
Lời giải:
Đặt $\sqrt[3]{x^2+3x-5}=a; \sqrt[3]{x+2}=b$. Khi đó pt đã cho tương đương với:
$a+b=\sqrt[3]{a^3+b^3-1}+1$
$\Leftrightarrow a+b-1=\sqrt[3]{a^3+b^3-1}$
$\Leftrightarrow (a+b-1)^3=a^3+b^3-1$
$\Leftrightarrow (a+b)^3-3(a+b)^2+3(a+b)-1=a^3+b^3-1$
$\Leftrightarrow 3ab(a+b)-3(a+b)^2+3(a+b)=0$
$\Leftrightarrow ab(a+b)-(a+b)^2+(a+b)=0$
$\Leftrightarrow (a+b)(ab-a-b+1)=0$
$\Leftrightarrow (a+b)(a-1)(b-1)=0$
Nếu $a+b=0\Leftrightarrow \sqrt[3]{x^2+3x-5}=-\sqrt[3]{x+2}$
$\Leftrightarrow x^2+3x-5=-(x+2)$
$\Leftrightarrow x^2+4x-3=0$
$\Leftrightarrow x=-2\pm \sqrt{7}$
Nếu $a-1=0\Leftrightarrow \sqrt[3]{x^2+3x-5}=1$
$\Leftrightarrow x^2+3x-6=0$
$\Leftrightarrow x=\frac{-3\pm \sqrt{33}}{2}$
Nếu $b-1=0\Leftrightarrow \sqrt[3]{x+2}=1$
$\Leftrightarrow x=-1$
1.
ĐKXĐ: \(x\ge\dfrac{3+\sqrt{41}}{4}\)
\(\Leftrightarrow x^2+x-1+2\sqrt{x\left(x^2-1\right)}=2x^2-3x-4\)
\(\Leftrightarrow x^2-4x-3-2\sqrt{\left(x^2-x\right)\left(x+1\right)}=0\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x}=a>0\\\sqrt{x+1}=b>0\end{matrix}\right.\)
\(\Rightarrow a^2-3b^2-2ab=0\)
\(\Leftrightarrow\left(a+b\right)\left(a-3b\right)=0\)
\(\Leftrightarrow a=3b\)
\(\Leftrightarrow\sqrt{x^2-x}=3\sqrt{x+1}\)
\(\Leftrightarrow x^2-x=9\left(x+1\right)\)
\(\Leftrightarrow...\) (bạn tự hoàn thành nhé)
2.
ĐKXĐ: \(x\ge-1\)
Đặt \(\sqrt{x+1}=a\ge0\) pt trở thành:
\(x^3+3\left(x^2-4a^2\right)a=0\)
\(\Leftrightarrow x^3+3ax^2-4a^3=0\)
\(\Leftrightarrow\left(x-a\right)\left(x+2a\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=x\\2a=-x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=x\left(x\ge0\right)\\2\sqrt{x+1}=-x\left(x\le0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=x+1\\x^2=4x+4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-x-1=0\\x^2-4x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1+\sqrt{5}}{2}\\x=2-2\sqrt{2}\end{matrix}\right.\)
1) \(\sqrt[]{3x+7}-5< 0\)
\(\Leftrightarrow\sqrt[]{3x+7}< 5\)
\(\Leftrightarrow3x+7\ge0\cap3x+7< 25\)
\(\Leftrightarrow x\ge-\dfrac{7}{3}\cap x< 6\)
\(\Leftrightarrow-\dfrac{7}{3}\le x< 6\)
Phương trình ban đầu \(\Leftrightarrow2^{\frac{x+1}{2}}.2^{\frac{4x-2}{3}}.2^{9-3x}=2^{\frac{3}{2}}.2^{-3}\)
\(\Leftrightarrow2^{\frac{x+1}{2}+\frac{4x-2}{3}+9-3x}=2^{\frac{3}{2}-3}\)
\(\Leftrightarrow x=\frac{62}{7}\) là nghiệm của phương trình