Trên một đường đua hình tròn có chu vi l=1000m có hai vận động viên xuất phát đồng thời cùng một vị trí đi xe đạp cùng chiều nhau với vận tốc v1=6m/s và v2=10m/s.
a. Tính thời gian từ khi xuất phát đến khi gặp nhau lần thứ nhất
b. Tính khoảng thời gian nhỏ nhất từ khi xuất phát tới khi họ gặp nhau tại chính nơi xuất phát đó?
a. thời gian từ khi xuất phát đến khi gặp nhau lần thứ nhất là \(t=\dfrac{l}{v_2-v_1}=\dfrac{1000}{4}=250\left(s\right)\)
b,thời gian để mỗi xe chạy được một vòng là \(\left\{{}\begin{matrix}t_1=\dfrac{l}{v_1}=\dfrac{1000}{6}=\dfrac{500}{3}\left(s\right)\\t_2=\dfrac{l}{v_2}=\dfrac{1000}{10}=100\left(s\right)\end{matrix}\right.\)
Giả sử lần đầu tiên gặp nhau tại chính nơi xuất phát đó là A
, xe 1 đi thêm x vòng , xe 2 đi thêm y vòng , thời gian mất \(\Delta t\)
ta có \(\Delta t=x.t_1=y.t_2\Leftrightarrow\dfrac{t_1}{t_2}=\dfrac{y}{x}\Leftrightarrow\dfrac{y}{x}=\dfrac{\dfrac{500}{3}}{100}=\dfrac{5}{3}\)
\(\Leftrightarrow\dfrac{y}{x}=\dfrac{5k}{3k}\Leftrightarrow\Delta t=x.t_1=3k.t_1\Rightarrow\Delta t_{min}\Leftrightarrow k=1\)
\(\Rightarrow\Delta t_{min}=3.t_1=500\left(s\right)\)