tìm số tự nhiên n biết: 1+2+...+n=36
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{21}+\frac{1}{27}+\frac{1}{36}+...+\frac{2}{n\left(n+1\right)}=\frac{2}{9}\)
\(\frac{2}{42}+\frac{2}{54}+...+\frac{2}{n\left(n+1\right)}=\frac{2}{9}\)
\(\frac{2}{6.7}+\frac{2}{7.8}+...+\frac{2}{n\left(n+1\right)}=\frac{2}{9}\)
\(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{n}-\frac{1}{n+1}=\frac{1}{9}\)
\(\Rightarrow\frac{1}{6}-\frac{1}{n+1}=\frac{n+1-6}{6n+6}=\frac{1}{9}\)
\(\frac{n-5}{6n+6}=\frac{1}{9}\)
\(9n-45=6n+6\)
\(9n-6n=6+45=51\)
\(n=51:3=17\)
\(\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+...+\frac{2}{n}.\left(n+1\right)=\frac{2}{9}\)
\(\Leftrightarrow\frac{1}{3.7}+\frac{1}{4.7}+\frac{1}{4.9}+...+\frac{2}{n}.\left(n+1\right)=\frac{2}{9}\)
\(\Leftrightarrow\frac{2}{2.3.7}+\frac{2}{2.4.7}+\frac{2}{2.4.9}+...+\frac{2}{n}.\left(n+1\right)=\frac{2}{9}\)
\(\Leftrightarrow\frac{2}{6.7}+\frac{2}{7.8}+\frac{2}{8.9}+...+\frac{2}{n}.\left(n+1\right)=\frac{2}{9}\)
\(\Leftrightarrow2.\left(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{n}-\frac{1}{n}+1\right)=\frac{2}{9}\)
\(\Leftrightarrow2.\left(\frac{1}{6}-\frac{1}{n}+1\right)=\frac{2}{9}\)
\(\Leftrightarrow\frac{1}{6}-\frac{1}{n}+1=\frac{1}{9}\)
\(\Leftrightarrow\frac{1}{n}+1=\frac{1}{6}-\frac{1}{9}\)
\(\Leftrightarrow\frac{1}{n}+1=\frac{1}{18}\)
\(\Leftrightarrow n+1=18\)
\(\Leftrightarrow n=17\)
Vậy \(n=17\)
Để n2 + 36 \(⋮\)n - 1
=> n2 - 1 + 37 \(⋮\)n - 1
=> n2 - n + n - 1 + 37 \(⋮\)n - 1
=> n(n - 1) + (n - 1) + 37 \(⋮\)n - 1
=> (n - 1)(n + 1) + 37 \(⋮\)n - 1
Vì (n - 1)(n + 1) \(⋮\)n - 1
=> 37 \(⋮\)n - 1
=> n - 1 \(\inƯ\left(37\right)\)
=> \(n-1\in\left\{1;-1;37;-37\right\}\)
=> \(n\in\left\{2;0;38;-36\right\}\)
Vì n \(\inℕ\)
=> Các giá trị của n thỏa mãn bài toán là \(n\in\left\{0;2;38\right\}\)
Sửa lại một số chỗ :
Ta có:
(n2−8)2+36=(n2−6n+10)(n2+6n+10)
Để (n2−8)2+36 là số nguyên tố thì n2−6n+10=1 hoặc n2+6n+10=1
TH1: n2−6n+10=1
⇔ n=3
Thử lại thấy đúng.
TH2: n2+6n+10=1
⇔ n=−3 (loại vì n∈N)
Vậy với n=3 thì (n2−8)2+36 là số nguyên tố.
Tại sao (n^2-8)^2 +36 lại bằng ( n^2 -6n+1-)(n^2+6n+10) Vậy các bạn???
Giải thích giùm mình nha
Tks
Xét công thức: 1+2+3+.....+n = n(n+1):2
1+2+.....+n = 36
=> n(n+1) : 2 = 36
=> n(n+1) = 36 x 2 = 72
Mà n(n+1) =8 x (8+1)
Vậy n = 8