K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 1 2017

Lời giải:

Xét \(\frac{1}{P}=\frac{1}{a}+\frac{1}{b}+\frac{2}{ab}\)

Áp dụng bất đẳng thức AM-GM:

\(4=a^2+b^2\geq 2ab\Rightarrow ab\leq 2\Rightarrow \frac{2}{ab}\geq 1\)

Theo Cauchy-Schwarz: \(\frac{1}{a}+\frac{1}{b}\geq \frac{4}{a+b}\geq \frac{4}{\sqrt{2(a^2+b^2)}}=\sqrt{2}\)

Do đó \(\frac{1}{P}\geq 1+\sqrt{2}\Leftrightarrow P\leq \sqrt{2}-1\)

Vậy \(P_{\max}=\sqrt{2}-1\Leftrightarrow (a,b)=(\sqrt{2},\sqrt{2})\)

27 tháng 4 2016

bài này khó quá cậu thử cm a+b>=căn 8 xem