Cho góc nhọn xOy và một điểm A nằm trong góc đó . Hãy tìm điểm B trên Ox, điểm C trên Oy sao cho tam giác ABC có chu vi nhỏ nhất .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
qua O x lay D sao cho D diểm doi sung cua a qua O x lay E sao cho E ldiểm em doi sung cua a qua O y doan DE cat O x dâuau thdiểmem B ở do, DE cat O y dâuau thi C ở dó
de dang Cdượcoc tam Giác ABC có chu vi nhnhấtat
+ Xét tam giác bất kì ABC có Bvà C lần lượt nằm trong hai tia Ox và Oy
+ Gọi A' và A'' là các điểm đối xứng với điểm A lần lượt qua các đường thẳng Ox và Oy .
Ta có \(AB=A'B\) và \(AC=A'CC\)( do các tam giác \(ABA'\)và tam giác \(ACA''\)là tam giác cân).
+ Gọi 2p là chu vi của tam giác ABC thì có :
2p = \(AB+BC+CA=A'B+BC+CA''\ge A'A''\)
Dấu'' bằng '' xảy ra khi 4 điểm \(A'B,C,A''\)thẳng hàng .
Nên để chu vi tam giác ABC bé nhất thì phải lấy B và lần lượt là giao điểm của đoạn thẳng \(A'A''\)với hai tia Ox và Oy ( các giao điểm đó tồn tại vì góc xOy nhọn )
Chúc bạn học tốt !!!
Cách dựng:
- Dựng điểm D đối xứng với A qua Ox
- Dựng điểm E đối xứng với A qua Oy
Nối DE cắt Ox tại B, Oy tại C
Tam giác ABC là tam giác có chu vi nhỏ nhất
Vì ∠ (xOy) < 90 0 nên DE luôn cắt Ox và Oy do đó ∆ ABC luôn dựng được.
Chứng minh:
Chu vi ∆ ABC bằng AB + BC + AC
Vì D đối xứng với A qua Ox nên Ox là trung trực của AD
⇒ AB = BD (tính chất đường trung trực)
E đối xứng với A qua Oy nên Oy là trung trực của AE
⇒ AC = CE (tính chất đường trung trực)
Suy ra: AB + BC + AC = BD + BC + BE = DE (1)
Lấy B' bất kì trên Ox, C' bất kì trên tia Oy. Nối C'E, C'A, B'A, B'D.
Ta có: B'A = B'D và C'A = C'E (tính chất đường trung trực)
Chu vi ∆ AB'C' bằng AB'+ AC’ + B'C'= B'D+C’E+ B'C' (2)
Vì DE ≤ B'D + C’E+ B'C' (dấu bằng xảy ra khi B' trùng B, C' trùng C) nên chu vi của ∆ ABC ≤ chu vi của ∆ A'B'C'
Vậy ∆ ABC có chu vi bé nhất.
- Tìm A’ đối xứng với A qua Oy , B’ đối xứng với A qua Ox
- Nối A’B’ cắt Ox tại B , cắt Oy tại C . Đó chính là hai điểm cần tìm
- Chứng minh B,C là hai điểm duy nhất cần tìm .
Thật vậy : Do A’ đối xứng với A qua Oy , cho nên CA=CA’ (1) . Mặt khác : B’ đối xứng với A qua Ox cho nên ta có BA=BB’ (2) .
Gọi P là chu vi tam giác ABC - do từ (1) và (2) - thì P=CA+CB+BA =CA’+CB+BB’=A’B’