K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2016

Giả sử: \(z=x+yi (x;y\in |R)\)

Ta có: \(2(z+1)=3\overline{z}+i(5-i) \)

     <=>\(2(x+yi+1)=3(x-yi)+i(5-i)\)

     <=>\(2x+2yi+2=3x-3yi+5i-i^2\)

     <=>\((3x-2x+1-2)+(5-3y-2y)i=0\)

     <=>\((x-1)+(5-5y)i=0\)

     <=>\(\begin{align} \begin{cases} x-1&=0\\ 5-5y&=0 \end{cases} \end{align}\)

     <=>\(\begin{align} \begin{cases} x&=1\\ y&=1 \end{cases} \end{align}\)

Suy ra: z=1+i =>|z|=\(\sqrt{2}\)

7 tháng 4 2016

Đặt \(z=a+bi,\left(a,b\in R\right)\), khi đó :

\(2\left(z+1\right)=3\overline{z}+i\left(5-i\right)\Leftrightarrow2\left(a+bi+1\right)=3\left(a-bi\right)+1+5i\Leftrightarrow a-1+5\left(1-b\right)i=0\)

\(\Leftrightarrow\begin{cases}a=1\\b=1\end{cases}\) \(\Leftrightarrow\left|z\right|=\sqrt{2}\)

6 tháng 4 2016

\(\left(1-2i\right)z+\frac{1-3i}{1+i}=2-i\Leftrightarrow z=\frac{1}{5}+\frac{7}{5}i\)

\(\Rightarrow\left|z\right|=\sqrt{2}\)

\(f\left(x\right)=\left(\sqrt[3]{x}+\frac{2}{\sqrt{x}}\right)^{15}\) \(=\Sigma_{k=0}^{15}C^k_{15}x^{\frac{15-k}{3}}.x^{\frac{-k}{2}}.2^k\)

                                  \(=\Sigma_{k=0}^{15}C^k_{15}.x^{5-\frac{5k}{2}}.2^k\)

\(\left(0\le k\le15,\right)k\in Z\)

Hệ số không chứa x ứng với k thỏa mãn : \(5-\frac{5k}{6}=0\Leftrightarrow k=6\) => Hệ số 320320

8 tháng 4 2016

Giả sử: \(z=x+yi\) \((x;y\in|R)\)

Ta có: \((1+i)z+2\overline{z}=2\)

  <=> \((1+i)(x+yi)+2(x-yi)=2\)

  <=> \(x+yi+xi-y+2x-2yi-2=0\)

  <=> \((3x-y-2)+(x-y)i=0\)

  <=> \(\begin{align} \begin{cases} 3x-y&=2\\ x-y&=0 \end{cases} \end{align}\)

  <=> \(\begin{align} \begin{cases} x&=1\\ y&=1 \end{cases} \end{align}\)

=> \(z=1+i\)

Ta có: \(\omega=z+2+3i \)

               \(=1+i+2+3i\)

               \(=3+4i\)

=> \(|\omega|=\sqrt{3^2+4^2}=5\)

8 tháng 4 2016

Đặt \(z=a+bi\left(a,b\in R\right)\)

Theo bài ta có : \(\begin{cases}3a-b=2\\a-b=0\end{cases}\) \(\Leftrightarrow\begin{cases}a=1\\b=1\end{cases}\) nên \(z=1+i\)

Khi đó \(\omega=z+2+3i=1+i+2+3i=3+4i\)

Vậy \(\left|\omega\right|=\sqrt{3^2+4^2}=5\)

NV
14 tháng 4 2022

\(z=x+yi\Rightarrow\left(x+1\right)^2+\left(y+1\right)^2=x^2+y^2\)

\(\Rightarrow x+y+1=0\Rightarrow\) tập hợp z là đường thẳng d: \(x+y+1=0\)

\(P=\left|\left(z-4-5i\right)-\left(w-3-4i\right)\right|\ge\left|\left|z-4-5i\right|-\left|w-3-4i\right|\right|=\left|\left|z-4-5i\right|-1\right|\)

Gọi M là điểm biểu diễn z và \(A\left(4;5\right)\Rightarrow\left|z-4-5i\right|=AM\)

\(AM_{min}=d\left(A;d\right)=\dfrac{\left|4+5+1\right|}{\sqrt{1^2+1^2}}=5\sqrt{2}\) 

\(\Rightarrow P\ge\left|5\sqrt{2}-1\right|=5\sqrt{2}-1\)

14 tháng 4 2022

sao ở đây lại có dấu ≥ ạ?

P=|(z−4−5i)−(w−3−4i)|≥||z−4−5i|−|w−3−4i||

 
7 tháng 4 2016

 

Điều kiện \(z\ne0;\left|z\right|\ne1\)

\(\Leftrightarrow\frac{\overline{z}\left(\left|z\right|-1\right)\left(1+iz\right)}{\left|z\right|^2-1}=i\Leftrightarrow\frac{\overline{z}\left(\left|z\right|-1\right)\left(1+iz\right)}{\left(\left|z\right|-1\right)\left(\left|z\right|+1\right)}\)

                               \(\Leftrightarrow\overline{z}\left(1+iz\right)=\left(\left|z\right|+1\right)i\)

                               \(\Leftrightarrow\overline{z}+i\left|z\right|^2=\left(\left|z\right|+1\right)i\) (*)

Giả sử \(z=x+yi,x,y\in R\), khi đó (*) trở thành :

\(x-yi+\left(x^2+y^2\right)i=\left(\sqrt{x^2+y^2}+1\right)i\)

\(\Leftrightarrow x+\left(x^2+y^2-\sqrt{x^2+y^2}-y-1\right)i=0\)

\(\Leftrightarrow\begin{cases}x=0\\x^2+y^2-\sqrt{x^2+y^2}-y-1=0\end{cases}\)

\(\Leftrightarrow\begin{cases}x=0\\y^2-\left|y\right|-y-1=0\end{cases}\)

\(\Leftrightarrow\begin{cases}x=0\\\begin{cases}y=-1\\y=1+\sqrt{2}\end{cases}\end{cases}\)

Nếu \(x=0,y=1+\sqrt{2}\) thì \(z=\left(1+\sqrt{2}\right)i\) thỏa mãn điều kiện

Nếu \(x=0,y=-1\) thì \(z=-i\) , khi đó \(\left|z\right|=1\) không thỏa mãn điều kiện

Vậy số phức cần tìm là \(z=\left(1+\sqrt{2}\right)i\)

AH
Akai Haruma
Giáo viên
5 tháng 7 2017

Giải:

Đặt \(z=a+bi\) với $a,b$ là các số thực

Ta có:

\(|z-i|=|(1+i)z|\Leftrightarrow |a+i(b-1)|=|z||1+i|=|a+bi|\sqrt{2}\)

\(\Leftrightarrow a^2+(b-1)^2=2(a^2+b^2)\)

\(\Leftrightarrow a^2+(b+1)^2=2\)

Vậy tập hợp biểu diễn số phức $z$ nằm trên đường tròn tâm \((0,-1)\) bán kính \(R=\sqrt{2}\)