Chứng minh phân số \(\frac{n}{n+1}\) là tối giản ( n thuộc N và n khác )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là ƯC của n và n+1
=> n chia hết cho d và n+1 chia hết cho d
=> (n+1)-n chia hết d
=> 1 chia hết cho d
=> n/n+1 là p/s tối giản
b;Gọi ƯCLN (n;n+1) là :d
ta có :n chia hết cho d;n+1 chia hết cho d
=> n+1 - n chia hết cho d
=> 1 chia hết cho d
=>1=d
vậy \(\frac{n}{n+1}\) là phân số tối giản
b;Gọi ƯCLN (n;n+1) là :d
ta có :n chia hết cho d;n+1 chia hết cho d
=> n+1 - n chia hết cho d
=> 1 chia hết cho d
=>1=d
vậy \(\frac{n}{n+1}\)là phân số tối giản
Giải:
Gọi ƯCLN (n;n+1) là :d
Ta có :n chia hết cho d;n+1 chia hết cho d
=> n+1 - n chia hết cho d
=> 1 chia hết cho d
=>1=d
vậy n/n+1 là phân số tối giản.
Chúc bạn học tốt^_^
Để CM \(\frac{n+5}{n+4}\) là phân số tối giản thì ta cần chứng minh n + 5 và n + 4 là nguyên tố cùng nhau
Gọi d là ước chung lớn nhất của n + 5 và n + 4
=> n + 5 và n + 4 chia hết cho d
=> (n + 5) - (n + 4) chia hết cho d
=> 1 chia hết cho d => d = 1
Vì ước chung lớn nhất của n + 5 và n + 4 là 1 => n + 5 và n + 4 là nguyên tố cùng nhau
=> \(\frac{n+5}{n+4}\) là phân số tối giản (đpcm)
Câu 1:
gọi n-1/n-2 là M.
Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1
Theo đề bài: M = n−1n−2n−1n−2 (n ∈∈Zℤ; n ≠2≠2)
Gọi d = ƯCLN (n - 1; n - 2)
=> n - 1 - (n - 2) ⋮⋮d *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1
=> 1 ⋮⋮d
=> d ∈∈Ư (1)
Ư (1) = {1}
=> d = 1
Mà ngay từ lúc đầu d phải bằng 1 rồi.
Vậy nên với mọi n ∈∈Z và n ≠2≠2thì M là phân số tối giản.
Gọi d là UCLN(3-n;n-4)
\(\Leftrightarrow\left\{{}\begin{matrix}n-3⋮d\\n-4⋮d\end{matrix}\right.\Leftrightarrow1⋮d\)
=>UCLN(3-n;n-4)=1
=>A là phân số tối giản
Gọi \(\left(2n+1,n\right)\) là \(d\).
Vì \(\left(2n+1,n\right)\) là \(d\)
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\n⋮d\end{cases}}\)
\(\Rightarrow\left(2n+1\right)-n⋮d\)
\(\Rightarrow\left(2n+1\right)-2n⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow\left(2n+1,n\right)=1\)
\(\Rightarrow2n+1\)và \(n\)là 2 SNT cùng nhau
\(\Rightarrow\)Phân số \(\frac{2n+1}{n}\)tối giản (đpcm)
Đặt: ( 2n + 1 ; n ) = d
=> ( 2n + 1 - n ; n ) = d
=> (n + 1; n ) = d
=> ( n + 1 - n ; n ) = d
=> (1; n ) = d
=> d = 1
Như vậy: ( 2n + 1; n ) = 1 => 2n + 1; n là hai số nguyên tố cùng nhau
=> M là phân số tối giản
Gọi d là UWCLN(2n+1,2n(n+1))=1
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\Rightarrow n\left(2n+1\right)⋮d\Rightarrow2n^2+n⋮d\\2n\left(n+1\right)⋮d\Rightarrow2n^2+2n⋮d\end{cases}}\)
\(\Rightarrow\left(2n^2+2n\right)-\left(2n^2+n\right)⋮d\Rightarrow2n⋮d\)
Mà\(2n+1⋮d\)
\(\Rightarrow\left(2n+1\right)-2n⋮d\Rightarrow1⋮d\Rightarrow d=1\)
Suy ra 2n+1 và 2n(n+1) nguyên tố cùng nhau hay phân số 2n+1/2n(n+1) tồi giản(đpcm)
Đặt (n - 2021, n - 2022) = d \(\left(d\inℕ^∗\right)\)
=> \(\left\{{}\begin{matrix}n-2021⋮d\\n-2022⋮d\end{matrix}\right.\Rightarrow\left(n-2021\right)-\left(n-2022\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
do đó (n - 2021, n - 2022) = 1
=> \(\dfrac{n-2021}{n-2022}\) là phân số tối giản
Ai giúp e với ạ !
Bạn làm mik suýt vui vì tưởng có người trả lời ?