K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2016

Lấy logarit cơ số 10 hai vế ta có :

\(lg2^{x+2}+lg3^3=lg4^x+lg5^{x-1}\)

\(\Leftrightarrow\left(x+2\right)lg2+xlg3=xlg4+\left(x-1\right)lg5\)

\(\Leftrightarrow x\left(lg4+lg5-lg3-lg2\right)=2lg2+lg5\)

\(\Leftrightarrow x.lg\frac{4.5}{3.2}=lg\left(2^2.5\right)\)

\(\Leftrightarrow x=\frac{lg20}{lg\frac{10}{3}}\)

Vậy nghiệm của phương trình là \(x=\frac{lg20}{lg\frac{10}{3}}\)

a, \(\frac{9}{x^2-4}=\frac{x-1}{x+2}+\frac{3}{x-2}\left(ĐKXĐ:x\ne\pm2\right)\)

\(\frac{9}{\left(x-2\right)\left(x+2\right)}=\frac{x-1}{x+2}+\frac{3}{x-2}\)

\(\frac{9}{\left(x-2\right)\left(x+2\right)}=\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

Khử mẫu : \(9=\left(x-1\right)\left(x-2\right)+3\left(x+2\right)\)

Đến đây nhường bn, rất dễ =))

b, \(\frac{1}{x-5}-\frac{3}{x^2-6x+5}=\frac{5}{x-1}\)

\(\frac{1}{x-5}-\frac{3}{\left(x-5\right)\left(x-1\right)}=\frac{5}{\left(x-1\right)}\)

\(\frac{\left(x-1\right)}{x-5}-\frac{3}{\left(x-5\right)\left(x-1\right)}=\frac{5\left(x-5\right)}{\left(x-1\right)\left(x-5\right)}\)

Khử mẫu \(x-1-3=5\left(x-5\right)\)

Tự lm nốt mà cho mk hỏi, đề bài có bpt mà bpt đâu 

6 tháng 7 2020

\(\frac{9}{x^2-4}=\frac{x-1}{x+2}+\frac{3}{x-2}\left(ĐKXĐ:x\ne2;-2\right)\)

\(< =>\frac{9}{x^2-2^2}=\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(< =>\frac{9}{\left(x-2\right)\left(x+2\right)}=\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{3x+6}{\left(x+2\right)\left(x-2\right)}\)

\(< =>9=x^2-2x-x+2+3x+6\)

\(< =>x^2-\left(2x+x-3x\right)+\left(2+6-9\right)=0\)

\(< =>x^2-2=0\)\(< =>x^2=2\)

\(< =>x=\pm\sqrt{2}\left(tmđk\right)\)

Vậy tập nghiệm của phương trình trên là \(\pm\sqrt{2}\)

12 tháng 4 2022

\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)

\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)

\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)

\(\Leftrightarrow x^2-9-x^2+3x=0\)

\(\Leftrightarrow3x-9=0\)

\(\Leftrightarrow3x=9\)

\(\Leftrightarrow x=3\left(n\right)\)

Vậy \(S=\left\{3\right\}\)

12 tháng 4 2022

\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)

\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)

\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)

\(\Leftrightarrow12x-9-12x+20+2x-7>0\)

\(\Leftrightarrow2x+4>0\)

\(\Leftrightarrow2x>-4\)

\(\Leftrightarrow x>-2\)

a: =>4x^2-24x+36-4x^2+4x-1<10

=>-20x<10-35=-25

=>x>=5/4

b: =>x(x^2-25)-x^3-8<=3

=>x^3-25x-x^3-8<=3

=>-25x<=11

=>x>=-11/25

1 tháng 3 2021

`(-7x^2+4)/(x^3+1)=5/(x^2-x+1)-1/(x+1)(x ne -1)`

`<=>-7x^2+4=5(x+1)-x^2+x-1`

`<=>-7x^2+4=5x+5-x^2+x-1`

`<=>6x^2+6x=0`

`<=>6x(x+1)=0`

Vì `x ne -1=>x+1 ne 0`

`=>x=0`

Vậy `S={0}`

ĐKXĐ: \(x\ne-1\)

Ta có: \(\dfrac{-7x^2+4}{x^3+1}=\dfrac{5}{x^2-x+1}-\dfrac{1}{x+1}\)

\(\Leftrightarrow\dfrac{5\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}-\dfrac{x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{-7x^2+4}{\left(x+1\right)\left(x^2-x+1\right)}\)

Suy ra: \(5x+5-x^2+x-1=-7x^2+4\)

\(\Leftrightarrow-x^2+6x+4+7x^2-4=0\)

\(\Leftrightarrow6x^2+6x=0\)

\(\Leftrightarrow6x\left(x+1\right)=0\)

mà 6>0

nên x(x+1)=0

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=-1\left(loại\right)\end{matrix}\right.\)

Vậy: S={0}

11 tháng 1 2023

Bài `1:`

`h)(3/4x-1)(5/3x+2)=0`

`=>[(3/4x-1=0),(5/3x+2=0):}=>[(x=4/3),(x=-6/5):}`

______________

Bài `2:`

`b)3x-15=2x(x-5)`

`<=>3(x-5)-2x(x-5)=0`

`<=>(x-5)(3-2x)=0<=>[(x=5),(x=3/2):}`

`d)x(x+6)-7x-42=0`

`<=>x(x+6)-7(x+6)=0`

`<=>(x+6)(x-7)=0<=>[(x=-6),(x=7):}`

`f)x^3-2x^2-(x-2)=0`

`<=>x^2(x-2)-(x-2)=0`

`<=>(x-2)(x^2-1)=0<=>[(x=2),(x^2=1<=>x=+-2):}`

`h)(3x-1)(6x+1)=(x+7)(3x-1)`

`<=>18x^2+3x-6x-1=3x^2-x+21x-7`

`<=>15x^2-23x+6=0<=>15x^2-5x-18x+6=0`

`<=>(3x-1)(5x-1)=0<=>[(x=1/3),(x=1/5):}`

`j)(2x-5)^2-(x+2)^2=0`

`<=>(2x-5-x-2)(2x-5+x+2)=0`

`<=>(x-7)(3x-3)=0<=>[(x=7),(x=1):}`

`w)x^2-x-12=0`

`<=>x^2-4x+3x-12=0`

`<=>(x-4)(x+3)=0<=>[(x=4),(x=-3):}`

11 tháng 1 2023

`m)(1-x)(5x+3)=(3x-7)(x-1)`

`<=>(1-x)(5x+3)+(1-x)(3x-7)=0`

`<=>(1-x)(5x+3+3x-7)=0`

`<=>(1-x)(8x-4)=0<=>[(x=1),(x=1/2):}`

`p)(2x-1)^2-4=0`

`<=>(2x-1-2)(2x-1+2)=0`

`<=>(2x-3)(2x+1)=0<=>[(x=3/2),(x=-1/2):}`

`r)(2x-1)^2=49`

`<=>(2x-1-7)(2x-1+7)=0`

`<=>(2x-8)(2x+6)=0<=>[(x=4),(x=-3):}`

`t)(5x-3)^2-(4x-7)^2=0`

`<=>(5x-3-4x+7)(5x-3+4x-7)=0`

`<=>(x+4)(9x-10)=0<=>[(x=-4),(x=10/9):}`

`u)x^2-10x+16=0`

`<=>x^2-8x-2x+16=0`

`<=>(x-2)(x-8)=0<=>[(x=2),(x=8):}`

9 tháng 1 2021

Câu 1 : 

a, \(\frac{3\left(2x+1\right)}{4}-\frac{5x+3}{6}=\frac{2x-1}{3}-\frac{3-x}{4}\)

\(\Leftrightarrow\frac{6x+3}{4}+\frac{3-x}{4}=\frac{2x-1}{3}+\frac{5x+3}{6}\)

\(\Leftrightarrow\frac{5x+6}{4}=\frac{9x+1}{6}\Leftrightarrow\frac{30x+36}{24}=\frac{36x+4}{24}\)

Khử mẫu : \(30x+36=36x+4\Leftrightarrow-6x=-32\Leftrightarrow x=\frac{32}{6}=\frac{16}{3}\)

tương tự 

16 tháng 5 2021

\(\frac{19}{4}-\frac{2\left(3x-5\right)}{5}=\frac{3-2x}{10}-\frac{3x-1}{4}\)

\(< =>\frac{19.5}{20}-\frac{8\left(3x-5\right)}{20}=\frac{2\left(3-2x\right)}{20}-\frac{5\left(3x-1\right)}{20}\)

\(< =>95-24x+40=6-4x-15x+5\)

\(< =>-24x+135=-19x+11\)

\(< =>5x=135-11=124\)

\(< =>x=\frac{124}{5}\)

Câu 4:

Giả sử điều cần chứng minh là đúng

\(\Rightarrow x=y\), thay vào điều kiện ở đề bài, ta được:

\(\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}=\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}\) (luôn đúng)

Vậy điều cần chứng minh là đúng

3 tháng 2 2021

2) \(\sqrt{x^2-5x+4}+2\sqrt{x+5}=2\sqrt{x-4}+\sqrt{x^2+4x-5}\)

⇔ \(\sqrt{\left(x-4\right)\left(x-1\right)}-2\sqrt{x-4}+2\sqrt{x+5}-\sqrt{\left(x+5\right)\left(x-1\right)}=0\)

⇔ \(\sqrt{x-4}.\left(\sqrt{x-1}-2\right)-\sqrt{x+5}\left(\sqrt{x-1}-2\right)=0\)

⇔ \(\left(\sqrt{x-4}-\sqrt{x+5}\right)\left(\sqrt{x-1}-2\right)=0\)

⇔ \(\left[{}\begin{matrix}\sqrt{x-4}-\sqrt{x+5}=0\\\sqrt{x-1}-2=0\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}\sqrt{x-4}=\sqrt{x+5}\\\sqrt{x-1}=2\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}x\in\varnothing\\x=5\end{matrix}\right.\)

⇔ x = 5

Vậy S = {5}

20 tháng 1 2016

1/

-x^3 -5x^2 + 4x +4

=> x1 =-5.5877............

    x2=1.1895.............

    x3=-0.6018............