Giải phương trình :
\(lg^4x+lg^3x-2lg^2x-9lgx-9=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{ 2x+6=0 }\)
\(\Leftrightarrow2x=-6\)
\(\Leftrightarrow x=-3\)
\(S=\left\{-3\right\}\)
\(\text{3x-9=0 }\)
\(\Leftrightarrow3x=9\)
\(\Leftrightarrow x=3\)
\(S=\left\{3\right\}\)
\(\text{4x+20=0}\)
\(\Leftrightarrow4x=-20\)
\(\Leftrightarrow x=-5\)
\(S=\left\{-5\right\}\)
\(\text{4x+1=6-x}\)
\(\Leftrightarrow4x+1-6-x=0\)
\(\Leftrightarrow3x-5=0\)
\(\Leftrightarrow3x=5\)
\(\Leftrightarrow x=\dfrac{5}{3}\)
\(S=\left\{\dfrac{5}{3}\right\}\)
a: 2x+6=0
=>2x=-6
=>x=-3
b: 3x-9=0
=>3x=9
=>x=3
c: 4x+20=0
=>x+5=0
=>x=-5
d: 4x+1=6-x
=>5x=5
=>x=1
a) \(4x-9=0\) \(\Leftrightarrow4x=9\) \(\Leftrightarrow x=\dfrac{9}{4}\)
Vậy \(x=\dfrac{9}{4}\)
b) \(-2x+50=0\) \(\Leftrightarrow2x=50\) \(\Leftrightarrow x=25\)
Vậy \(x=25\)
c) \(3x+11=0\) \(\Leftrightarrow3x=-11\) \(\Leftrightarrow x=-\dfrac{11}{3}\)
Vậy \(x=-\dfrac{11}{3}\)
\(\Leftrightarrow\sqrt[3]{3x+1}+\sqrt[3]{5-x}=\sqrt[3]{4x-3}+\sqrt[3]{9-2x}\)
Đặt \(\left\{{}\begin{matrix}\sqrt[3]{3x+1}=a\\\sqrt[3]{5-x}=b\\\sqrt[3]{4x-3}=c\\\sqrt[3]{9-2x}=d\end{matrix}\right.\)
Ta được: \(\left\{{}\begin{matrix}a+b=c+d\\a^3+b^3=c^3+d^3\end{matrix}\right.\)
TH1:
Nếu \(a+b=c+d=0\Leftrightarrow\sqrt[3]{3x+1}+\sqrt[3]{5-x}=\sqrt[3]{4x-3}+\sqrt[3]{9-2x}=0\)
\(\Rightarrow\left\{{}\begin{matrix}3x+1=-\left(5-x\right)\\4x-3=-\left(9-2x\right)\end{matrix}\right.\) \(\Rightarrow x=-3\)
TH2: nếu \(a+b=c+d\ne0\)
\(a+b=c+d\Leftrightarrow\left(a+b\right)^3=\left(c+d\right)^3\)
\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=c^3+d^3+3cd\left(c+d\right)\)
\(\Leftrightarrow ab\left(a+b\right)=cd\left(c+d\right)\) (do \(a^3+b^3=c^3+d^3\))
\(\Leftrightarrow ab=cd\) (do \(a+b=c+d\ne0\))
\(\Leftrightarrow\sqrt[3]{\left(3x+1\right)\left(5-x\right)}=\sqrt[3]{\left(4x-3\right)\left(9-2x\right)}\)
\(\Leftrightarrow\left(3x+1\right)\left(5-x\right)=\left(4x-3\right)\left(9-2x\right)\)
\(\Leftrightarrow5x^2-28x+32=0\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{8}{5}\end{matrix}\right.\)
Vậy \(x=\left\{-3;4;\dfrac{8}{5}\right\}\)
Cái cuối này căn bậc 2 hay căn bậc 3 em? Căn bậc 2 thì hơi nghi ngờ về khả năng giải được của pt này.
1
a (9+x)=2 ta có (9+x)= 9+x khi 9+x >_0 hoặc >_ -9
(9+x)= -9-x khi 9+x <0 hoặc x <-9
1)pt 9+x=2 với x >_ -9
<=> x = 2-9
<=> x=-7 thỏa mãn điều kiện (TMDK)
2) pt -9-x=2 với x<-9
<=> -x=2+9
<=> -x=11
x= -11 TMDK
vậy pt có tập nghiệm S={-7;-9}
các cau con lai tu lam riêng nhung cau nhan với số âm thi phan điều kiện đổi chiều nha vd
nhu cau o trên mk lam 9+x>_0 hoặc x>_0
với số âm thi -2x>_0 hoặc x <_ 0 nha
1:
a: =>3x=6
=>x=2
b: =>4x=16
=>x=4
c: =>4x-6=9-x
=>5x=15
=>x=3
d: =>7x-12=x+6
=>6x=18
=>x=3
2:
a: =>2x<=-8
=>x<=-4
b: =>x+5<0
=>x<-5
c: =>2x>8
=>x>4
c) \(\dfrac{x}{x-2}+\dfrac{x}{x+2}=\dfrac{4x}{x^2-4}.ĐKXĐ:x\ne2;-2\)
<=>\(\dfrac{x\left(x+2\right)}{x^2-4}+\dfrac{x\left(x-2\right)}{x^2-4}=\dfrac{4x}{x^2-4}\)
<=>x2+2x+x2-2x=4x
<=>2x2-4x=0
<=>2x(x-2)=0
<=>\(\left[{}\begin{matrix}2x=0< =>x=0\\x-2=0< =>x=2\left(loại\right)\end{matrix}\right.\)
Vậy pt trên có nghiệm là S={0}
d) 11x-9=5x+3
<=>11x-5x=9+3
<=>6x=12
<=>x=2
Vậy pt trên có nghiệm là S={2}
e) (2x+3)(3x-4) =0
<=> \(\left[{}\begin{matrix}2x+3=0< =>x=\dfrac{-3}{2}\\3x-4=0< =>x=\dfrac{4}{3}\end{matrix}\right.\)
Vậy pt trên có tập nghiệm là S={\(\dfrac{-3}{2};\dfrac{4}{3}\)}
a) 5x+9 =2x
<=> 5x-2x=9
<=> 3x=9
<=> x=3
Vậy pt trên có nghiệm là S={3}
b) (x+1)(4x-3)=(2x+5)(x+1)
<=> (x+1)(4x-3)-(2x+5)(x+1)=0
<=>(x+1)(2x-8)=0
<=>\(\left[{}\begin{matrix}x+1=0< =>x=-1\\2x-8=0< =>2x=8< =>x=4\end{matrix}\right.\)
Vậy pt trên có tập nghiệm là S={-1;4}
Đặt \(t=lgx\), viết lại phương trình ở dạng :
\(3^2+3t.3-\left(t^4+t^3-2t^2\right)=0\)
Coi 3=u là ẩn, giải phương trình bậc 2 theo ẩn u,
\(\Delta=\left(2t^2+t\right)^2\)
tìm được
\(\begin{cases}u=-t^2-2t\\u=t^2-t\end{cases}\) và \(\begin{cases}x=10^{\frac{1+\sqrt{13}}{2}}\\x=10^{\frac{1-\sqrt{13}}{2}}\end{cases}\)