Cho hàm số \(y=x^4-2m^2x^2+1\left(1\right)\)
Tìm tất cả các giá trị m để đồ thị (1) có 3 điểm cực trị A,B,C và diện tích tam giác ABC bằng 32 (đơn vị diện tích)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Ta có y ' = 4 x 3 − 4 m x = 4 x x 2 − m
Đồ thị hàm số có 3 điểm cực trị ⇔ y ' = 0 có ba nghiệm phân biệt, suy ra m > 0
Khi đó tọa độ ba điểm cực trị là A 0 ; 2 m , B m ; 2 m − m 2 , C − m ; 2 m − m 2
Suy ra H 0 ; 2 m − m 2 là trung điểm BC
⇒
A
H
=
m
2
B
C
=
2
m
⇒
S
A
B
C
=
1
2
A
H
.
B
C
=
1
2
m
2
.2
m
=
32
⇒
m
=
4
Đáp án B
y ' = 4 x 3 − 4 m x = 4 x ( x 2 − m ) y ' = 0 ⇔ x = 0 x = ± m ⇒ A ( 0 ; 2 m ) , B ( m ; − m 2 + 2 m ) , C ( − m ; − m 2 + 2 m ) ⇒ S = 1 2 . 2 m + m 2 − 2 m .2 m = m 2 m = 32 ⇒ m = 4
+ Ta có: y’ = 6x2-6( 2m+1) x+ 6m(m+1)
do đó hàm số luôn có cực đại cực tiểu với mọi m.
+ Tọa độ các điểm CĐ, CT của đồ thị là A( m; 2m3+3m2+1 ) và B( m+1; 2m3+3m2)
Suy ra AB = √2 và phương trình đường thẳng AB: x+ y-2m3-3m2-m-1=0.
+ Do đó, tam giác MAB có diện tích nhỏ nhất khi và chỉ khi khoảng cách từ M tới AB nhỏ nhất.
d ( M , A B ) = 3 m 2 + 1 2 ⇒ d ( M , A B ) ≥ 1 2 ⇒ m i n d ( M , A B ) = 1 2
đạt được khi m=0
Chọn B
- Ta có \(y'=4x^3-4m^2x;y'=0\) \(\Leftrightarrow\begin{cases}x=0\\x^2=m^2\end{cases}\) Điều kiện có 3 điểm cực trị : \(m\ne0\)
- Tọa độ 3 điểm cực trị : A (0;1); B \(\left(-m;1-m^4\right),C\left(m;1-m^4\right)\)
- Chứng minh tam giác ABC cân đỉnh A. Tọa độ trung điểm I của BC là I \(\left(0;1-m^4\right)\)
- \(S_{ABC}=\frac{1}{2}AI.BC=m^4\left|m\right|=\left|m\right|^5=32\Leftrightarrow m=\pm2\left(tm\right)\)