Tìm giới hạn phân thức :
\(\lim\limits\left(\frac{n^3}{n^2+3}-\frac{2n^2}{2n+1}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Cả tử số và mẫu số của \(\frac{7n^2-3n+12}{n^2+2n+2}\) đều dẫn đến \(\infty\) nên không thể trả lời ngay biểu thức đó tiến đến giới hạn nào (dạng vô định \(\left(\frac{\infty}{\infty}\right)\)). Tuy nhiên sau khi chia cả tử số và mẫu số cho \(n^2\) :
\(\frac{7n^2-3n+12}{n^2+2n+2}=\frac{7-\frac{3}{n}+\frac{12}{n^2}}{1+\frac{2}{n}+\frac{2}{n^2}}\)
Ta thấy ngay tử số gần đến 7 và mẫu số gần đến 1 (vì \(\lim\limits\frac{1}{n^p}=0,p\ge1\)
Điều đó cho phép ta áp dụng công thức và thu được kết quả \(\lim\limits\frac{7n^2-3n+12}{n^2+2n+2}=\lim\limits\frac{7-\frac{3}{n}+\frac{12}{n^2}}{1+\frac{2}{n}+\frac{2}{n^2}}=7\)
b) Áp dụng công thức "Nếu tồn tại \(\lim\limits a^n,k\in\)N* thì tồn tại \(\lim\limits\left(a_n\right)^k=\left(\lim\limits a_n\right)^k\)"
ta có :
\(\lim\limits a_n=\left[\lim\limits\left(\frac{3n^2+n-2}{4n^2+2n+7}\right)\right]^3\)
Mặt khác do \(\lim\limits\frac{3n^2+n-2}{4n^2+2n+7}=\lim\limits\frac{3+\frac{1}{n}-\frac{2}{n^2}}{4+\frac{2}{n}+\frac{7}{n^2}}=\frac{3}{4}\)
nên \(\lim\limits a_n=\left(\frac{3}{4}\right)^3=\frac{27}{64}\)
1: \(-1< =cosx< =1\)
=>\(-3< =3\cdot cosx< =3\)
=>\(y\in\left[-3;3\right]\)
2:
TXĐ là D=R
3: \(L=\lim\limits\dfrac{-3n^3+n^2}{2n^3+5n-2}\)
\(=\lim\limits\dfrac{-3+\dfrac{1}{n}}{2+\dfrac{5}{n^2}-\dfrac{2}{n^3}}=-\dfrac{3}{2}\)
4:
\(L=lim\left(3n^2+5n-3\right)\)
\(=\lim\limits\left[n^2\left(3+\dfrac{5}{n}-\dfrac{3}{n^2}\right)\right]\)
\(=+\infty\) vì \(\left\{{}\begin{matrix}lim\left(n^2\right)=+\infty\\\lim\limits\left(3+\dfrac{5}{n}-\dfrac{3}{n^2}\right)=3>0\end{matrix}\right.\)
5:
\(\lim\limits_{n\rightarrow+\infty}n^3-2n^2+3n-4\)
\(=\lim\limits_{n\rightarrow+\infty}n^3\left(1-\dfrac{2}{n}+\dfrac{3}{n^2}-\dfrac{4}{n^3}\right)\)
\(=+\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{n\rightarrow+\infty}n^3=+\infty\\\lim\limits_{n\rightarrow+\infty}1-\dfrac{2}{n}+\dfrac{3}{n^2}-\dfrac{4}{n^3}=1>0\end{matrix}\right.\)
\(1,y=3cosx\)
\(+TXD\) \(D=R\)
Có \(-1\le cosx\le1\)
\(\Leftrightarrow-3\le3cosx\le3\)
Vậy có tập giá trị \(T=\left[-3;3\right]\)
\(2,y=cosx\)
\(TXD\) \(D=R\)
\(3,L=lim\dfrac{n^2-3n^3}{2n^3+5n-2}=lim\dfrac{\dfrac{1}{n}-3}{2+\dfrac{5}{n^2}-\dfrac{2}{n^3}}\)(chia cả tử và mẫu cho \(n^3\))
\(=\dfrac{lim\dfrac{1}{n}-lim3}{lim2+5lim\dfrac{1}{n^2}-2lim\dfrac{1}{n^3}}=\dfrac{0-3}{2+5.0-2.0}=-\dfrac{3}{2}\)
\(4,L=lim\left(3n^2+5n-3\right)\\ =lim\left(3+\dfrac{5}{n}-\dfrac{3}{n^2}\right)\\ =lim3+5lim\dfrac{1}{n}-3lim\dfrac{1}{n^2}\\ =3\)
\(5,\lim\limits_{n\rightarrow+\infty}\left(n^3-2n^2+3n-4\right)\\ =lim\left(1-\dfrac{2}{n}+\dfrac{3}{n^2}-\dfrac{4}{n^3}\right)\\ =lim1-0\\ =1\)
a) \(\lim \frac{{ - 2n + 1}}{n} = \lim \frac{{n\left( { - 2 + \frac{1}{n}} \right)}}{n} = \lim \left( { - 2 + \frac{1}{n}} \right) = - 2\)
b) \(\lim \frac{{\sqrt {16{n^2} - 2} }}{n} = \lim \frac{{\sqrt {{n^2}\left( {16 - \frac{2}{{{n^2}}}} \right)} }}{n} = \lim \frac{{n\sqrt {16 - \frac{2}{{{n^2}}}} }}{n} = \lim \sqrt {16 - \frac{2}{{{n^2}}}} = 4\)
c) \(\lim \frac{4}{{2n + 1}} = \lim \frac{4}{{n\left( {2 + \frac{1}{n}} \right)}} = \lim \left( {\frac{4}{n}.\frac{1}{{2 + \frac{1}{n}}}} \right) = \lim \frac{4}{n}.\lim \frac{1}{{2 + \frac{1}{n}}} = 0\)
d) \(\lim \frac{{{n^2} - 2n + 3}}{{2{n^2}}} = \lim \frac{{{n^2}\left( {1 - \frac{2}{n} + \frac{3}{{{n^2}}}} \right)}}{{2{n^2}}} = \lim \frac{{1 - \frac{2}{n} + \frac{3}{{{n^2}}}}}{2} = \frac{1}{2}\)
lim\(\frac{n^2+2n-3}{n\left(n+1\right)}\)=lim\(\frac{\frac{n^2}{n^2}+\frac{2n}{n^2}-\frac{3}{n^2}}{\frac{n^2}{n^2}+\frac{1}{n}}\)
=\(\frac{lim1+lin\frac{n}{2}-lim\frac{3}{n^2}}{lim1+lim\frac{1}{n}}=1\)
a) lim (n3 + 2n2 – n + 1) = lim n3 (1 + ) = +∞
b) lim (-n2 + 5n – 2) = lim n2 ( -1 + ) = -∞
c) lim ( - n) = lim
= lim = lim = lim = .
d) lim ( + n) = lim ( + n) = lim n ( + 1) = +∞.
\(a=\lim\dfrac{1}{\sqrt{4n+1}+2\sqrt{n}}=\dfrac{1}{\infty}=0\)
\(b=\lim n\left(\sqrt{1+\dfrac{2}{n}}-\sqrt{1-\dfrac{2}{n}}-1\right)=+\infty.\left(-1\right)=-\infty\)
\(c=\lim4^n\left(\sqrt{\left(\dfrac{9}{16}\right)^n-\left(\dfrac{3}{16}\right)^n}-1\right)=+\infty.\left(-1\right)=-\infty\)
\(d=\lim n^3\left(3+\dfrac{2}{n}+\dfrac{1}{n^2}\right)=+\infty.3=+\infty\)
\(a=\lim n\left(\sqrt[3]{-1+\dfrac{2}{n}-\dfrac{5}{n^3}}\right)=+\infty.\left(-1\right)=-\infty\)
\(b=\lim\left(\sqrt{n+1}+\sqrt{n}\right)=+\infty\)
\(c=\lim n\left(\dfrac{1}{n^2+n}-1\right)=+\infty.\left(-1\right)=-\infty\)
\(d=\lim\left(\dfrac{2n^2-1-2n\left(n+1\right)}{n+1}\right)=\lim\left(\dfrac{-1-2n}{n+1}\right)=-2\)
\(e=\lim\dfrac{2n^2+n-3+\dfrac{1}{n}}{\dfrac{2}{n}-3}=\dfrac{+\infty}{-3}=-\infty\)
a/ Không phải dạng vô định thì cứ thay trực tiếp vào thôi
\(\lim\limits_{x\rightarrow2}\left(\frac{\sqrt{x^2+60}-2x^2}{x^2-1}\right)=\frac{\sqrt{2^2+60}-2.2^2}{2^2-1}=0\)
b/ Bạn có viết nhầm mẫu số ko? Đề bài thế này hoàn toàn ko chặt chẽ
Số hạng tổng quát \(\frac{1}{4n^2}\) đâu có đúng với 2 số hạng đầu trong dãy?
Dù sao thì, nếu tử số và mẫu số có cùng số số hạng là \(2n\) thì vẫn tính được dựa vào giới hạn kẹp
\(1+2+3+...+2n=\frac{2n\left(n+1\right)}{2}\)
\(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{4n^2}< 1+1+1+...+1=2n\)
\(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2n^2}>\frac{1}{2n^2}+\frac{1}{2n^2}+\frac{1}{2n^2}+...+\frac{1}{2n^2}=2n.\frac{1}{2n^2}=\frac{1}{n}\)
\(\Rightarrow lim\left(\frac{2n\left(2n+1\right)}{2.2n}\right)< lim\left(\frac{1+2+3+...+2n}{1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{4n^2}}\right)< lim\left(\frac{2n\left(2n+1\right)}{\frac{1}{n}}\right)\)
Mà \(lim\left(\frac{2n\left(2n+1\right)}{2.2n}\right)=lim\left(n+\frac{1}{2}\right)=+\infty\)
\(lim\left(\frac{2n\left(2n+1\right)}{\frac{1}{n}}\right)=lim\left(2n^2\left(2n+1\right)\right)=+\infty\)
\(\Rightarrow lim\left(\frac{1+2+3+...+2n}{1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{4n^2}}\right)=+\infty\)
Khi \(n\rightarrow\infty\) ta có \(\frac{n^3}{n^2+3}=\frac{1}{\frac{1}{n}+\frac{3}{n^2}}\rightarrow\infty;\) \(\frac{2n^2}{2n+1}=\frac{2}{\frac{2}{n}+\frac{1}{n^2}}\rightarrow\infty\) và như vậy ở đây ta gặp vô định dạng \(\left(\infty-\infty\right)\). Do vậy để tính giới hạn ta cần biến đổi sơ bộ như sau
\(a_n=\frac{n^3-6n^2}{\left(n^2+3\right)\left(2n+1\right)}=\frac{1-\frac{6}{n}}{\left(1+\frac{3}{n^2}\right)\left(2+\frac{1}{n}\right)}\) \(\Rightarrow\lim\limits a_n=\frac{1}{1.2}=\frac{1}{2}\)