Cho các số tự nhiên a1 ; a2 ;…;a2013 có tổng bằng 20132014 .Chứng minh rằng: a13 + a23 + ….+ a20133 chia hết cho 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
uses crt;
const fi='dulieu.inp';
var f1:text;
a:array[1..100]of integer;
n,i,t1,t2:integer;
begin
clrscr;
assign(f1,fi); reset(f1);
readln(f1,n);
for i:=1 to n do
read(f1,a[i]);
t1:=0;
t2:=0;
for i:=1 to n do
begin
if a[i]>0 then t1:=t1+a[i];
if a[i]<0 then t2:=t2+a[i];
end;
writeln('Tong cac so duong la: ',t1);
writeln('Tong cac so am la: ',t2);
close(f1);
readln;
end.
chon dai di thoi
a1=1
a2=3
=>d3=2
d1=a1-a3 de sai roi a1<a3 khong co d1
TH1 : Trong cac so tren co 1 so ai chia hết cho 10 ( i = 1;2;3;...;9)
SUY RA trong 10 số bất kì có 1 số chia hết cho 10 ( 1)
TH2 : Trong các số trên ko có số nào chia hết cho 10 .Khi đó các số dư khi chia cho 10 là 1;2;3;...;9 ( 9 chữ số ),với 10 số chia cho 10 nên ít nhất sẽ có 2 số chia cho 10 có cùng số dư ( theo nguyen li dirich le)
Suy ra hiệu của 2 số đó sẽ chia hết cho 10 (2)
Từ 1 và 2 suy ra thế nào cũng sẽ có 1 số bất kì hoac hiệu một số các số liên tiếp nhau trong dãy trên chia hết cho 10(DPCM)
Bg: Đặt S1 = a1; S2 = a1+ a2; S3 = a1+a2+a3 ... ;S10 = a1+a2+...+a10. Xét 10 số S1,S2, ... S10 ta có 2 trường hợp như sau :
+) Nếu có 1 số Gk nào đó tận cg = 0 ( Sk = a1+a2 + ... ak, k từ 1 - 10) => tổng của k số a1,a2, ... ak chia hết cho 10 ( đpcm )
+) Nếu k có số nào trong 10 số S1, S2, ... S10 tận cg là 0 => chắc chắn phải có ít nhất 2 số nào đó có chữ số tận cg giống nhau. Ta gọi 2 số đó là : Sm và Mn (1= <m<n=< 10 ) .... Sm = a1+a2 + ... a(m); Mn = a1+a2+ ...a(m)+ a(m1)+ a(m2) + ... + a(n ) .
=> Sn - Sm = a(m+1)+ a(m+2) + ....+ a(n) tận cg là 0 => Tổng của n-m số a( m+1),a(m+2), ..., a(n) chia hết cho 10 ( đpcm ) .
program du_lieu;
uses crt;
var i,n:integer;
a:array[1..100]of integer;
tbc:real;
f:text;
begin
clrscr;
assign(f,'DULIEU.INP');reset(f);
readln(f,n);
for i:=1 to n do
begin
read(f,a[i]);
end;
close(f);
for i:=1 to n do
tbc:=tbc+a[i];
writeln(tbc/n);
readln;
end.
ai chuk?
ta có 20132014= a1 + a2 +…+a2013
Đặt S = a13 + a23 + ….+ a20133
S - 20132014= a13 + a23 + ….+ a20133 - (a1 + a2 +…+a2013)
= (a13 - a1) + (a13 - a1) +...+ (a13 - a1)
ta có bài toán phụ sau:
x3 - x = x(x2 - 1) = x(x-1)(x+1) (vì x2 - 1 = (x+1)(x-1))
Ta thấy x(x-1)(x+1) là 3 số tự nhiên liên tiếp nên tích đó phải chia hết
Vậy x3 - x chia hết cho 3
Từ kết luận của bài toán phụ trên mà ta suy ra được mỗi hiệu của tổng trên đều chia hết cho 3 nên tổng đó chia hết cho 3
Suy ra S và 20132014 khi chia cho 3 thì cùng có số dư như nhau
Mà 2013 chia hết cho 3 nên 20132014 chia hết cho 3
Vậy S chia hết cho 3 hay a13 + a23 + ….+ a20133 chia hết cho 3( điều phải chứng minh)