K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2016

Ta cần chứng minh tam giác MNP là tam giác cân và có một góc bằng \(\frac{\Pi}{3}\)

Giả sử  lục giacs có hướng âm, kí hiệu \(f\) là phép quay vec tơ theo góc \(-\frac{\Pi}{3}\) và M, N. P theo thứ tự là trung điểm FA, BC, DE

Khi đó AB=BO, CD=DO=OC, EF=FO=OE nên các tam giác ABO, CDO, EFO đều và có hướng âm

Suy ra \(f\left(\overrightarrow{AB}\right)=\overrightarrow{AO}\)\(f\left(\overrightarrow{OC}\right)=\overrightarrow{OD}\)\(f\left(\overrightarrow{FO}\right)=\overrightarrow{FE}\)

Từ đó ta có :

\(f\left(\overrightarrow{MN}\right)=f\left(\frac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{FC}\right)\right)=\frac{1}{2}\left(f\left(\overrightarrow{AB}\right)+f\left(\overrightarrow{FC}\right)\right)\)

                \(=\frac{1}{2}\left(\overrightarrow{AO}\right)+\overrightarrow{OD}+\overrightarrow{FE}=\frac{1}{2}\left(\overrightarrow{AD}+\overrightarrow{FE}\right)\)

                \(=\overrightarrow{MP}\)

Suy ra tam giác MNP cân và có góc PMN = \(\frac{\Pi}{3}\) => Điều phải chứng minh

21 tháng 9 2018

Giải bài 8 trang 17 sgk Hình học 10 | Để học tốt Toán 10

Gọi G là trọng tâm tam giác MPR Giải bài 8 trang 17 sgk Hình học 10 | Để học tốt Toán 10

Ta cần đi chứng minh G cũng là trọng tâm của ΔNQS bằng cách chứng minh Giải bài 8 trang 17 sgk Hình học 10 | Để học tốt Toán 10

Thật vậy ta có:

Giải bài 8 trang 17 sgk Hình học 10 | Để học tốt Toán 10

(Vì N, Q, S lần lượt là trung điểm của BC, DE, FA)

Giải bài 8 trang 17 sgk Hình học 10 | Để học tốt Toán 10

(Vì M, P, R là trung điểm AB, CD, EF)

Giải bài 8 trang 17 sgk Hình học 10 | Để học tốt Toán 10

Giải bài 8 trang 17 sgk Hình học 10 | Để học tốt Toán 10 hay G cũng là trọng tâm của ΔNQS.

Vậy trọng tâm ΔMPR và ΔNQS trùng nhau.

13 tháng 4 2016

Ta có :  =  

           =  

          

=> ++ = (++) =   = 

=>  ++ =       (1)

Gọi G là trong tâm của tam giác MPR, ta có:

        + =     (2)

Mặt khác : +

                = +

                = +

=>  ++ =(++)+ ++  (3)

Từ (1),(2), (3) suy ra:  ++ = 

Vậy G là trọng tâm của tam giác NQS

18 tháng 1 2021

Hình như câu b chưa rõ lắm, tam giác ABC cân tại đâu?

18 tháng 1 2021

đề chỉ ghi tam giác cân thôi bạn

30 tháng 3 2017

Ta có : =

=

=

=> ++ = (++) = =

=> ++ = (1)

Gọi G là trong tâm của tam giác MPR, ta có:

+ + = (2)

Mặt khác : = +

= +

= +

=> ++ =(++)+ ++ (3)

Từ (1),(2), (3) suy ra: ++ =

Vậy G là trọng tâm của tam giác NQS

19 tháng 5 2017

Giải:

Gọi \(G\) là trọng tâm của \(\Delta MPR\)\(K\) là trọng tâm của của \(\Delta NQS\)

\(\Rightarrow\) Ta cần chứng minh: \(K\)\(G\) trùng nhau

\(G\) là trọng tâm của \(\Delta MPR\) nên ta có:

\(3\overrightarrow{KG}=\overrightarrow{KM}+\overrightarrow{KP}+\overrightarrow{KR}\)

\(=\dfrac{1}{2}\left(\overrightarrow{KA}+\overrightarrow{KB}+\overrightarrow{KC}+\overrightarrow{KD}+\overrightarrow{KE}+\overrightarrow{KF}\right)\) (t/c trung điểm)

\(=\dfrac{1}{2}\left(\overrightarrow{KB}+\overrightarrow{KC}\right)+\dfrac{1}{2}\left(\overrightarrow{KD}+\overrightarrow{KE}\right)+\dfrac{1}{2}\left(\overrightarrow{KA}+\overrightarrow{KF}\right)\)

\(=\overrightarrow{KN}+\overrightarrow{KQ}+\overrightarrow{KS}=\overrightarrow{0}\) (Vì \(K\) là trọng tâm của của \(\Delta NQS\))

\(\Rightarrow\) Đpcm

20 tháng 5 2017

1 tháng 10 2017

Đáp án C

16 tháng 5 2018

a)

Giải bài tập Toán 9 | Giải Toán lớp 9

b) Cách vẽ lục giác đều có tất cả các đỉnh nằm trên đường tròn (O)

Vẽ các dây cung AB = BC = CD = DE = EF = FA = R = 2 cm

(Ta đã nêu được cách chia đường tròn thành sáu cung bằng nhau tại bài tập 10 SGK trang 71)

c) Vì các dây cung AB = BC = CD = DE = EF = FA bằng nhau nên khoảng cách từ O đến các dây là bằng nhau ( định lý liên hệ giữa dây cung và khoảng cách từ tâm đến dây)