Số các số nguyên sao cho là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Nếu p = 2 thì p + 2 = 2 + 2 = 4 không là số nguyên tố
2 + 4 = 6 không là số nguyên tố
Vậy p = 2 không thỏa mãn
Nếu p = 3 thì p + 2 = 3 + 2 = 5 là số nguyên tố
3 + 4 = 7 là số nguyên tố
Vậy p = 3 thỏa mãn
Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2
Khi p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) không là số nguyên tố
Vậy p = 3k + 1 không thỏa mãn
Khi p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố
Vậy p = 3k + 2 không thỏa mãn
Vậy p = 3 thỏa mãn duy nhất.
Bài 2:
Khi ta xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2 thì chắc chắn sẽ có một số chia hết cho 3
p là số nguyên tố; p > 3 nên p không chia hết cho 3 => 4p không chia hết cho 3
Ta thấy 2p + 1 là số nguyên tố; p > 3 => 2p + 1 > 3 nên 2p + 1 không chia hết cho 3 => 2(2p + 1) không chia hết cho 3 -> 4p + 2 không chia hết cho 3
Vì thế 4p + 1 phải chia hết cho 3
Mà p > 3 nên 4p + 1 > 3
=> 4p + 1 không là số nguyên tố. 4p + 1 là hợp số.
Giải:
a) Vì (x-5) là Ư(6)={-6;-3;-2;-1;1;2;3;6}
Ta có bảng giá trị:
x-5=-6 ➜x=-1
x-5=-3 ➜x=2
x-5=-2 ➜x=3
x-5=-1 ➜x=4
x-5=1 ➜x=6
x-5=2 ➜x=7
x-5=3 ➜x=8
x-5=6 ➜x=11
Vậy x ∈ {-1;2;3;4;5;6;7;8;11}
b) Vì (x-1) là Ư(15)={-15;-5;-3;-1;1;3;5;15}
Ta có bảng giá trị:
x-1=-15 ➜x=-14
x-1=-5 ➜x=-4
x-1=-3 ➜x=-2
x-1=-1 ➜x=0
x-1=1 ➜x=2
x-1=3 ➜x=4
x-1=5 ➜x=6
x-1=15 ➜x=16
Vậy x ∈ {-14;-4;-2;0;2;4;6;16}
c) x+6 ⋮ x+1
⇒x+1+5 ⋮ x+1
⇒5 ⋮ x+1
⇒x+1 ∈ Ư(5)={-5;-1;1;5}
Ta có bảng giá trị:
x+1=-5 ➜x=-6
x+1=-1 ➜x=-2
x+1=1 ➜x=0
x+1=5 ➜x=4
Vậy x ∈ {-6;-2;0;4}
Chúc bạn học tốt!
a) Ta có (x-5)là Ư(6)
\(\Rightarrow\)(x-5)\(\in\)\(\left\{-1;-2;-3;-6;1;2;3;6\right\}\)
\(\Rightarrow\)x\(\in\)\(\left\{4;3;2;-1;6;7;8;11\right\}\)
Vậyx\(\in\)\(\left\{4;3;2;-1;6;7;8;11\right\}\)
b)Ta có (x-1) là Ư(15)
\(\Rightarrow\left(x-1\right)\in\left\{-15;-5;-3;-1;1;3;5;15\right\}\)
\(\Rightarrow\)x\(\in\left\{-14;-4;-2;0;2;4;6;16\right\}\)
Vậy x\(\in\left\{-14;-4;-2;0;2;4;6;16\right\}\)
c)Ta có (x+6) \(⋮\) (x+1)
=(x+1)+5\(⋮\) (x+1)
Mà (x+1)\(⋮\) (x+1) nên để (x+6) \(⋮\) (x+1) thì 5 \(⋮\) (x+1)
Nên (x+1)\(\in\)Ư(5)
\(\Rightarrow\)x+1\(\in\)\(\left\{5;1;-1;-5\right\}\)
\(\Rightarrow x\in\left\{4;0;-2;-6\right\}\)
Bài 1:
a) Các số nguyên tố là 37;67 vì mỗi số này chỉ có hai ước là 1 và chính nó
b) Các số là hợp số là 57;77 và 87 vì mỗi số này có nhiều hơn 2 ước
Câu 2:
a) \(17\cdot19+23\cdot29\) là hợp số
b) \(5\cdot8-3\cdot13\) không là số nguyên tố cũng không là hợp số
c) \(143\cdot144\cdot145-145\cdot144\cdot143\) không là số nguyên tố cũng không là hợp số
Đáp án:
Giải thích các bước giải: a) x-5 ∈ Ư(6)={-1;1;-2;2;-3;3;-6;6} => x∈{4;6;3;7;2;8;-1;11} b) x-1∈ Ư(15)={-1;1;-3;3;-5;5;-15;15} => x∈ { 0;2;-2;4;-4;6;-14;16}
c) x+6 chia hết cho x+1 => x+1+5 chia hết cho x+1 => 5 chia hết cho x+1 (vì x+1 chia hết cho x+1) => x+1 ∈ Ư(5)={-1;1;-5;5} => x∈{ -2;0;-6;4}
cho và share nhé
a) Để A là phân số thì:
n - 3 \(\ne\)0
\(\Rightarrow\)n \(\ne\)3
b) Để A là một số nguyên thì 7 \(⋮\)( n - 3 )
\(\Rightarrow\)n - 3 \(\in\)Ư(7)
Ư(7) = { 1 ; -1 ; 7 ; -7 }
\(\Rightarrow\)n - 3 \(\in\){ 1 ; -1 ; 7 ; -7 }
\(\Rightarrow\)n \(\in\){ 4 ; 3 ; 10 ; -4 }
Vậy n \(\in\){ 4 ; 3 ; 10 ; -4 }
a ) Để A là phân số => n - 3 \(\ne\)0 => n \(\ne\)3
Vậy n khác 3 thì A là phân số
b ) Để A thuộc Z
=> 7 \(⋮\)n - 3
=> n - 3 thuộc Ư ( 7 ) = { - 7 ; - 1 ; 1 ; 7 }
=> n thuộc { - 4 ; 2 ; 4 ; 10 }
Tổng của 18 số nguyên đó là một số nguyên âm vì 18 số được chia làm 3 nhóm, mỗi nhóm 6 số .Tổng 6 số bất kì là một số nguyên âm nên tổng của 18 số nguyên đó là một số nguyên âm
Đặt a=(x^2+7x+2)/ (x+7) =x+2/(x+7)
Để a nguyên thì 2 chia hết cho x+7 =>S(x+7) ={1,-1,2,-2} =>S(x)={-6,-8,-5,-9}
Thử lại suy ra S={-6,-8,-5,-9}
P/s: Ng.ta giải giùm mình nên có gì sai sót bỏ qua nhé ^^
thank..... ban giai dung roi. ma lo co sai minh cung rat cam on ban vi ban da giup do minh