Bài 1:Cho a là số nguyên .CMR IaI<5 <=>-5<a<5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(sosohang!a!=\frac{2014}{2}=1007;..sosohang\left(a\right)=1007\)
\(\hept{\begin{cases}a=0\Rightarrow S=0++0+0+....................+0+0+0\\a>0\Rightarrow S=a+a+........+a+a+a+a=2014.a\\a< 0\Rightarrow S=\left(-a+a\right)+\left(-a+a\right)..+\left(-a+a\right)=0\end{cases}}\)
a, a = -3
b, a= 0
c, vì a luôn lớn hơn hoặc bằng 0 , / a / khác 0 . Vậy không có số nguyên a nào thỏa mãn.
Vì P>3 nên p có dạng: 3k+1;3k+2 (k E N sao)
=> p^2 :3(dư 1)
=> p^2+2018 chia hết cho 3 và>3
nên là hợp số
2, Vì n ko chia hết cho 3 và>3
nên n^2 chia 3 dư 1
=> n^2-1 chia hết cho 3 và >3 là hợp số nên ko đồng thời là số nguyên tố
3, Ta có:
P>3
p là số nguyên tố=>8p^2 không chia hết cho 3
mà 8p^2-1 là số nguyên tố nên ko chia hết cho 3
Ta dễ nhận thấy rằng: 8p^2-1;8p^2;8p^2+1 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 3
mà 2 số trước ko chia hết cho 3
nên 8p^2+1 chia hết cho 3 và >3 nên là hợp số (ĐPCM)
4, Vì p>3 nên p lẻ
=> p+1 chẵn chia hết cho 2 và>2
p+2 là số nguyên tố nên p có dạng: 3k+2 (k E N sao)
=> p+1=3k+3 chia hết cho 3 và>3
từ các điều trên
=> p chia hết cho 2.3=6 (ĐPCM)
|a|<5
=>a2<25
=>a2-25<0
=>(a-5)(a+5)<0
=>a-5 và a+5 trái dấu Mà a-5<a+5 với mọi a
=>a-5<0 và a+5>0
=>a<5 và a>-5 hay -5<a<5
Dựa vào khái niệm giá trị tuyệt đối của một số a là chứng minh được thôi mà bạn !!~!
Vì a thuộc Z nên từ |a|<5.Ta có:
=>|a|={1;2;3;4}
=>a={0,1,-1,2,-2,3,-3,4,-4}.Biểu diễn trên trục số các số này đều lớn hơn 5 và nhỏ hơn 5.
Do đó -5<a<5
Ta có: a thuộc Z và IaI<5.
Mà I5I=5 hoặc I5I=-5 => đpcm.