K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2018

\(OB^2=BD.CE\Rightarrow OB.OB=BD.CE\Rightarrow\frac{OB}{BD}=\frac{CE}{0B}\)MÀ 0B= 0B 

\(\Rightarrow\frac{OB}{BD}=\frac{CE}{0C}\Rightarrow\frac{OB}{CE}=\frac{BD}{OC}\)           

xét tam giác BDO và tam giác COE 

CÓ \(\frac{OB}{CE}=\frac{BD}{OC}\) ( CMT )

 góc DBO = góc ECO ( tam giác cân )

=> tam giác BDO đoòng dạng với tam giác COE ( trường hợp 2 c-g-c)

b)

có  tam giác BDO đồng dạng với tam giác COE (cmt )  => bdo =oec mà dbo = eco => dob = eoc               (1)

cm doe = dob

* : bài mk có thể sai và chưa chính xác vì vậy xin m.n đừng cmt ns lung tung ,ko hiểu thì hỏi ,sai thì ib chỉ hộ mk ,mk chỉ làm bt chứ ko phải vì kiếm 'k' vì vì thê mấy thể loại xx jj đó xin đừng quan tâm ,

thanks nhé ,có thể sai lên mk ko chắc,sai chỗ nào xin chỉ giúp mk để mk pít mà sửa ak ,thanks

2 tháng 3 2018

a, Theo đề bài ta có: BO^2 = BD.CE => BO.BO = BD. CE mà BO=CO (O là trung điểm BC)

=>BO.CO=BD.CE => \(\frac{BO}{CE}=\frac{BD}{CO}\)

Xét tam giác BDO và tam giác COE có:

góc B = góc C (tam giác ABC cân tại A)

 \(\frac{BO}{CE}=\frac{BD}{CO}\)(c.m.t)

=> tam giác BDO đồng dạng với tam giác COE (c.g.c) (đpcm)

Đề sai rồi bạn

1 tháng 4 2019

a) cm tg ABM = tg ACM moi dung phai ko ban

Bài 25: Cho tg ABC có B=C.Tia phân giác của góc A cắt BC tại D. Chứng minh rằng:a) tg ADB = tg ADCb) AB = ACBài 26: Cho góc xOy khác góc bẹt. Ot là phân giác của góc đó. Qua điểm H thuộc tia Ot,kẻ đường vuông góc với Ot, nó cắt Ox và Oy theo thứ tự là A và B.a) Chứng minh rằng OA = OB;b) Lấy điểm C thuộc tia Ot, chứng minh rằng CA = CB và OAC=OBCBài 27. Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy...
Đọc tiếp

Bài 25: Cho tg ABC có B=C.Tia phân giác của góc A cắt BC tại D. Chứng minh rằng:
a) tg ADB = tg ADC
b) AB = AC
Bài 26: Cho góc xOy khác góc bẹt. Ot là phân giác của góc đó. Qua điểm H thuộc tia Ot,
kẻ đường vuông góc với Ot, nó cắt Ox và Oy theo thứ tự là A và B.
a) Chứng minh rằng OA = OB;
b) Lấy điểm C thuộc tia Ot, chứng minh rằng CA = CB và OAC=OBC
Bài 27. Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy lấy hai điểm B,D
sao cho OA = OB, AC = BD.
a) Chứng minh: AD = BC.
b) Gọi E là giao điểm AD và BC. Chứng minh: tg EAC = tg EBD
c) Chứng minh: OE là phân giác của góc xOy, OE vuông góc CD
Bài 28 : Cho tam giác ABC với AB = AC. Lấy I là trung điểm BC. Trên tia BC lấy
điểm N, trên tia CB lấy điểm M sao cho CN=BM.
a) Chứng minh tg ABI= tg ACI và AI là tia pg của góc BAC
b)Chứng minh AM=AN.
c) Chứng minh AI vuông góc BC.

1
26 tháng 2 2020

1)A) vì \(\Delta ABC\)CÓ \(\widehat{B}=\widehat{C}\)

\(\Rightarrow\Delta ABC\)CÂN TẠI A

\(\Rightarrow AB=AC\)

XÉT \(\Delta ADB\)\(\Delta ADC\)

\(AB=AC\left(CMT\right)\)

\(\widehat{ADB}=\widehat{ADC}\left(GT\right)\)

\(AD\)LÀ CẠNH CHUNG

\(\Rightarrow\Delta ADB=\Delta ADC\left(C-G-C\right)\)

B)VÌ\(\Delta ABC\)CÓ \(\widehat{B}=\widehat{C}\)

\(\Rightarrow\Delta ABC\)CÂN TẠI A

=> AB=AC