cho tg ABC cân tại A. O là trung điểm BC. trên AB, AC lấy D, E sao cho OB2= BD.CE
a) CM: tg BDO đồng dạng với tg COE
b) CM: OD, OE thứ tự là phân giác góc BDE và góc CED
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(OB^2=BD.CE\Rightarrow OB.OB=BD.CE\Rightarrow\frac{OB}{BD}=\frac{CE}{0B}\)MÀ 0B= 0B
\(\Rightarrow\frac{OB}{BD}=\frac{CE}{0C}\Rightarrow\frac{OB}{CE}=\frac{BD}{OC}\)
xét tam giác BDO và tam giác COE
CÓ \(\frac{OB}{CE}=\frac{BD}{OC}\) ( CMT )
góc DBO = góc ECO ( tam giác cân )
=> tam giác BDO đoòng dạng với tam giác COE ( trường hợp 2 c-g-c)
b)
có tam giác BDO đồng dạng với tam giác COE (cmt ) => bdo =oec mà dbo = eco => dob = eoc (1)
cm doe = dob
* : bài mk có thể sai và chưa chính xác vì vậy xin m.n đừng cmt ns lung tung ,ko hiểu thì hỏi ,sai thì ib chỉ hộ mk ,mk chỉ làm bt chứ ko phải vì kiếm 'k' vì vì thê mấy thể loại xx jj đó xin đừng quan tâm ,
thanks nhé ,có thể sai lên mk ko chắc,sai chỗ nào xin chỉ giúp mk để mk pít mà sửa ak ,thanks
a, Theo đề bài ta có: BO^2 = BD.CE => BO.BO = BD. CE mà BO=CO (O là trung điểm BC)
=>BO.CO=BD.CE => \(\frac{BO}{CE}=\frac{BD}{CO}\)
Xét tam giác BDO và tam giác COE có:
góc B = góc C (tam giác ABC cân tại A)
\(\frac{BO}{CE}=\frac{BD}{CO}\)(c.m.t)
=> tam giác BDO đồng dạng với tam giác COE (c.g.c) (đpcm)
1)A) vì \(\Delta ABC\)CÓ \(\widehat{B}=\widehat{C}\)
\(\Rightarrow\Delta ABC\)CÂN TẠI A
\(\Rightarrow AB=AC\)
XÉT \(\Delta ADB\)VÀ\(\Delta ADC\)CÓ
\(AB=AC\left(CMT\right)\)
\(\widehat{ADB}=\widehat{ADC}\left(GT\right)\)
\(AD\)LÀ CẠNH CHUNG
\(\Rightarrow\Delta ADB=\Delta ADC\left(C-G-C\right)\)
B)VÌ\(\Delta ABC\)CÓ \(\widehat{B}=\widehat{C}\)
\(\Rightarrow\Delta ABC\)CÂN TẠI A
=> AB=AC