K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2015

vi x= 1,7

nen 0 thuoc Z

23 tháng 11 2016

Ta có: x,y,z \(\in\)Z ,nên

\(A=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)

\(\Rightarrow A>1\)

\(B=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{y}{x+y+z}+\frac{z}{x+y+z}+\frac{x}{x+y+z}=1\)

\(\Rightarrow B>1\)

Ta có: \(A+B=\left(\frac{x}{x+y}+\frac{y}{x+y}\right)+\left(\frac{y}{y+z}+\frac{z}{y+z}\right)+\left(\frac{z}{z+x}+\frac{x}{z+x}\right)=3\) và B > 1

Do đó A < 2.Vậy 1 < A < 2

=> A có giá trị là 1 số không thuộc tập hợp số nguyên

3 tháng 8 2019

giúp mk với mai mình phải nộp rồi ai đúng mik k cho

29 tháng 1 2018

1, x^3/3 + x^2/2 + x/6 = 0

<=> 2x^3 + 3x^2 + x = 0

<=> x.(2x^2+3x+1) = 0

<=> x.[(2x+2x)+(x+1)] = 0

<=> x.(x+1).(2x+1) = 0

<=> x=0 hoặc x+1=0 hoặc 2x+1=0

<=> x=0 hoặc x=-1 hoặc x=-1/2

Vậy ........

2, Có : P(x) = 3x^2+2x^2+6/6 = x.(x+1).(2x+1)/6

Ta thấy x;x+1 là 2 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 => A = x.(x+1).(2x+1) chia hết cho 6 (1)

+, Nếu x chia hết cho 3 => A chia hết cho 3

+, Nếu x chia 3 dư 1 => 2x+1 chia hết cho 3 => A chia hết cho 3

+, Nếu x chia 3 dư 2 => x+1 chia hết cho 3 => A chia hết cho 3

Vậy A chia hết cho 3 (2)
Từ (1) và (2) => A chia hết cho 6 ( vì 2 và 3 là 2 số nguyên tố cùng nhau )

=> P(x) luôn thuộc Z với mọi x thuộc Z

Tk mk nha

30 tháng 1 2018

cảm ơn nha :P

20 tháng 6 2020

Ta có: \(x+\frac{1}{y};y+\frac{1}{x}\) thuộc Z 

=> \(\left(x+\frac{1}{y}\right)\left(y+\frac{1}{x}\right)=xy+x.\frac{1}{x}+\frac{1}{y}.y+\frac{1}{xy}=xy+\frac{1}{xy}=xy+\frac{1}{xy}\) thuộc Z 

=> \(\left(xy+\frac{1}{xy}\right)^2=x^2y^2+2xy\frac{1}{xy}+\frac{1}{x^2y^2}=x^2y^2+\frac{1}{x^2y^2}+2\) thuộc Z 

=> \(x^2y^2+\frac{1}{x^2y^2}\) thuộc Z

20 tháng 7 2018

mình ghi lộn 1 tí đề bài số 5 là CMR: xy chia hết cho 12

20 tháng 7 2018

1. a) Cho \(x^2-25=0\) 

\(\Rightarrow\left(x-5\right)\left(x+5\right)=0\) 

\(\Rightarrow\) x = 5 hoặc x = -5 

Vậy \(x=\pm5\)là nghiệm của đa thức đã cho.

b) Cho \(x^2+8x-9=0\)

\(\Rightarrow x^2-x+9x-9=0\)

\(\Rightarrow x\left(x-1\right)+9\left(x-1\right)=0\)

\(\Rightarrow\left(x+9\right)\left(x-1\right)=0\)

\(\Rightarrow x=-9\) hoặc \(x=1\)

Vậy \(x=-9\) và \(x=1\) là nhiệm của đa thức đã cho.

30 tháng 12 2015

m=x+y+z+t/x+y+z+x+y+t+y+z+t+x+z+t=1/3