Giải bất phương trình
\(\frac{x^3+4x^2+x-6}{x^3-4x^2+x+6}\le0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\frac{x-1}{x+3}-\frac{x}{x-3}=\frac{4x+15}{9-x^2}\)
ĐKXĐ : \(x\ne\pm3\)
\(\Leftrightarrow\frac{x-1}{x+3}-\frac{x}{x-3}=\frac{-4x-15}{x^2-9}\)
\(\Leftrightarrow\frac{\left(x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow\frac{x^2-4x+3}{\left(x-3\right)\left(x+3\right)}-\frac{x^2+3x}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow\frac{x^2-4x+3-x^2-3x}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow-7x+3=-4x-15\)
\(\Leftrightarrow-7x+4x=-15-3\)
\(\Leftrightarrow-3x=-18\)
\(\Leftrightarrow x=6\)( tmđk )
Vậy x = 6 là nghiệm của phương trình
2) 2x + 3 < 6 - ( 3 - 4x )
<=> 2x + 3 < 6 - 3 + 4x
<=> 2x - 4x < 6 - 3 - 3
<=> -2x < 0
<=> x > 0
Vậy nghiệm của bất phương trình là x > 0
Từ bất phương trình ta có : \(\Leftrightarrow\left(3^x+x-4\right)\left(x^2+1\right)\le0\Leftrightarrow3^x+x-4\le0\)
Xét hàm số : \(f\left(x\right)=3^x+x-4;f'\left(x\right)=3^x\ln3+1>0\)
Suy ra hàm số đồng biến trên R
Do đó bất phương trình \(\Leftrightarrow f\left(x\right)\le f\left(1\right)\Leftrightarrow x\le1\)
Vậy bất phương trình có tập nghiệm S = (-\(\infty;1\)]
a) \(\left(x+1\right)\left(x-1\right)\left(3x-6\right)>0\)
Lập bảng xét dấu ta được kết quả :
\(Bpt\Leftrightarrow\left[{}\begin{matrix}-1< x< 1\\x>2\end{matrix}\right.\)
b) \(\dfrac{x+3}{x-2}\le0\)
Lập bảng xét dấu ta được kết quả :
\(Bpt\Leftrightarrow-3\le x< 2\)
d) \(\dfrac{2x-5}{3x+2}< \dfrac{3x+2}{2x-5}\)
\(\Leftrightarrow\dfrac{2x-5}{3x+2}-\dfrac{3x+2}{2x-5}< 0\)
\(\Leftrightarrow\dfrac{\left(2x-5\right)^2-\left(3x+2\right)^2}{\left(3x+2\right)\left(2x-5\right)}< 0\)
\(\Leftrightarrow\dfrac{\left(2x-5+3x+2\right)\left(2x-5-3x-2\right)}{\left(3x+2\right)\left(2x-5\right)}< 0\)
\(\Leftrightarrow\dfrac{-\left(5x-3\right)\left(x+7\right)}{\left(3x+2\right)\left(2x-5\right)}< 0\)
Lập bảng xét dấu ta được kết quả :
\(Bpt\Leftrightarrow\left[{}\begin{matrix}-7< x< -\dfrac{2}{3}\\\dfrac{5}{3}< x< \dfrac{5}{2}\end{matrix}\right.\)
câu 1 theo cách nhẩm nghiệm thì mình thấy hình như bn chép sai đề r
x2-1/x-1>0=>(x-1)(x+1)/x-1>0 rút gọn vế trái còn x+1>0=.x>-1
x2-6x+9>0=>x-3(x-3)>0=>xảy ra khi 2 thừa số này cùng dấu =>x>3 hoặc x<3
\(\frac{21}{x^2-4x+10}-x^2+4x-6\ge0\Leftrightarrow\frac{21}{x^2-4x+10}-\left(x^2-4x+10\right)+4\ge0\)
Đặt \(t=x^2-4x+10=\left(x-2\right)^2+6\), ta có điều kiện \(t\ge6\), khi đó \(t>0\)
Phương trình ban đầu tương đương : \(\frac{21}{t}-t+4\ge0\Leftrightarrow t^2-4t-21\le0\)
\(\Leftrightarrow-3\le t\le7\)
Kết hợp với điều kiện \(t\ge6\), ta được \(6\le t\le7\)
Do đó :
\(\frac{21}{x^2-4x+10}-x^2+4x-6\ge0\Leftrightarrow\begin{cases}\left(x-2\right)^2+6\ge6\\\left(x-2\right)^2+6\le7\end{cases}\)
\(\Leftrightarrow\left|x-2\right|\le1\)
\(\Leftrightarrow1\le x\le3\)
Vậy tập nghiệm của bất phương trình đã cho là \(T=\left[1;3\right]\)
\(\frac{x^3+4x^2+x-6}{x^3-4x^2+x+6}\le0\Rightarrow\frac{\left(x-1\right)\left(x+2\right)\left(x+3\right)}{\left(x+1\right)\left(x-3\right)\left(x-2\right)}\le0\)
Tới đây bạn lập bảng xét dấu là ra