Giải bất phương trình :
\(\sqrt{x^2-2x}\) \(\ge x+2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện xác định : \(x\ge1+\sqrt{3}\)
Với điều kiện đó, bất phương trình trở thành : \(x^2+2x-2+2\sqrt{x\left(x+1\right)\left(x-2\right)}\ge3\left(x^2-2x-2\right)\left(2\right)\)
\(\Leftrightarrow\sqrt{x\left(x-2\right)\left(x+1\right)}\ge x\left(x-2\right)-2\left(x+1\right)\)
\(\Leftrightarrow\left(\sqrt{x\left(x-2\right)}-2\sqrt{x+1}\right)\left(\sqrt{x\left(x-2\right)}+\sqrt{x+1}\right)\le0\) (3)
Do với mọi x thỏa mãn (1) , ta có \(\sqrt{x\left(x-2\right)}+\sqrt{x+1}>0\) nên
(3) \(\Leftrightarrow\sqrt{x\left(x-2\right)}\le2\sqrt{x+1}\)
\(\Leftrightarrow x^2-6x-4\le0\)
\(\Leftrightarrow3-\sqrt{13}\le x\le3+\sqrt{13}\) (4)
Kết hợp (1) và (4) ta được tập nghiệm của bất phương trình đã cho là :
\(\left[1+\sqrt{3};3+\sqrt{13}\right]\)
Điều kiện \(x^2-2x\ge0\Leftrightarrow\left[\begin{array}{nghiempt}x\ge2\\x\le0\end{array}\right.\) khi đó :
Bất phương trình \(\Leftrightarrow3^{\sqrt{x^2-2x}}\ge\left(3\right)^{\sqrt{\left(x-1\right)^2}-x}\Leftrightarrow\sqrt{x^2-2x}\ge\left|x-1\right|-x\)
- Khi \(x\ge2\Rightarrow x-1>0\) nên bất phương trình \(\sqrt{x^2-2x}\ge-1\) đúng với mọi \(x\ge2\)
- Khi \(x\le0\Rightarrow x-1< 0\) nên bất phương trình \(\sqrt{x^2-2x}\ge1-2x\)
\(\Leftrightarrow\begin{cases}x^2-2x\ge1-4x+4x^2\\x\le0\end{cases}\) vô nghiệm
Vậy tập nghiệm của bất phương trình là : S = [2;\(+\infty\) )
ĐKXĐ : \(1\le x\le3\)
Ta có \(\sqrt{x-1}+\sqrt{3-x}+4x\sqrt{2x}\ge x^3+10\)
<=> \(-2\sqrt{x-1}-2\sqrt{3-x}-8x\sqrt{2x}\le-2x^3-20\)
<=> \(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{3-x}-1\right)^2+2x^3-8x\sqrt{2x}+16\le0\)(1)
Đặt \(\sqrt{2x}=y\) => \(x=\dfrac{y^2}{2}\)
Khi đó \(2x^3-8x\sqrt{2x}+16=\dfrac{y^6}{4}-4y^3+16=\left(\dfrac{y^3-8}{2}\right)^2\)
Khi đó (1) <=> \(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{3-x}-1\right)^2+\left(\dfrac{y^3-8}{2}\right)^2\le0\)(1)
mà \(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{3-x}-1\right)^2+\left(\dfrac{y^3-8}{2}\right)^2\ge0\forall x;y\)(2)
Từ (2)(1) => \(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{3-x}-1\right)^2+\left(\dfrac{y^3-8}{2}\right)^2=0\)
<=> \(\left\{{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{3-x}-1=0\\\dfrac{y^3-8}{2}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\3-x=1\\y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=2\\\sqrt{2x}=2\end{matrix}\right.\Leftrightarrow x=2\)
Vậy x = 2 là nghiệm bất phương trình
ĐK: \(\hept{\begin{cases}1-\frac{2}{x}\ge0\\2x-\frac{8}{x}\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x-2}{x}\ge0\\\frac{2x^2-8}{x}\ge0\end{cases}}\)
<=> \(-2\le x< 0\) hoặc \(x\ge2\)
TH1: \(-2\le x< 0\)
Bất phương trình đúng
TH2: \(x\ge2\)(@@)
bất pt <=> \(2\sqrt{\frac{x-2}{x}}+\sqrt{\frac{2\left(x-2\right)\left(x+2\right)}{x}}\ge x\)
<=> \(\sqrt{\frac{x-2}{x}}\left(2+\sqrt{2\left(x+2\right)}\right)\ge x\)
<=> \(\sqrt{\frac{x-2}{x}}\left(\frac{2x}{\sqrt{2\left(x+2\right)}-2}\right)\ge x\)
<=> \(2\sqrt{\frac{x-2}{x}}+2\ge\sqrt{2\left(x+2\right)}\)
<=> \(4\left(1-\frac{2}{x}\right)+4+8\sqrt{1-\frac{2}{x}}\ge2x+4\)
<=> \(4\sqrt{1-\frac{2}{x}}\ge x-2+\frac{4}{x}\)
<=> \(16\left(1-\frac{2}{x}\right)\ge x^2+4+\frac{16}{x^2}-4x+8-\frac{16}{x}\)
<=> \(4\ge x^2+\frac{16}{x^2}-4x+\frac{16}{x}\)
<=> \(\left(x-\frac{4}{x}\right)^2-4\left(x-\frac{4}{x}\right)+4\le0\)
<=> \(\left(x-\frac{4}{x}+2\right)^2\le0\) vô nghiệm vì x > 2 => \(x-\frac{4}{x}+2>2\)
Vậy -2 \(\le\) x < 0
\(\sqrt{x^2-2x}\ge x+2\) (1)
\(\Leftrightarrow\) \(\begin{cases}x-2<0\\x^2-2x\ge0\end{cases}\) hoặc \(\begin{cases}x+2\ge0\\x^2-2x\ge\left(x+2\right)^2\end{cases}\)
\(\Leftrightarrow\) \(\begin{cases}x<-2\\x\le0\end{cases}\) hoặc \(\begin{cases}x<-2\\2\le x\end{cases}\)
hoặc \(\begin{cases}-2\le x\\x\le-\frac{2}{3}\end{cases}\)
\(\Leftrightarrow\) \(x<-2\) hoặc \(2\le x\le-\frac{2}{3}\)
\(\Leftrightarrow\) \(x\le-\frac{2}{3}\)
Vậy bất phương trình đã cho có tập nghiệm T(1) = (\(-\infty\); \(-\frac{2}{3}\))