Tìm m để hệ bất phương trình sau có nghiệm
\(\begin{cases}x-1<3-x\\mx+1>x\end{cases}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}x+my=2m\\mx+y=1-m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=2m^2\\mx+y=1-m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)y=2m^2+m-1\\x+my=2m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2m^2+m-1}{m^2-1}\\x+my=2m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{\left(2m-1\right)\left(m+1\right)}{\left(m+1\right)\left(m-1\right)}\\x+my=2m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2m-1}{m-1}\\x=2m-m\cdot\dfrac{2m-1}{m-1}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2m-1}{m-1}\\x=\dfrac{2m\left(m-1\right)}{m-1}-\dfrac{2m^2-m}{m-1}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2m-1}{m-1}\\x=\dfrac{2m^2-2m-2m^2+m}{m-1}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2m-1}{m-1}\\x=\dfrac{-m}{m-1}\end{matrix}\right.\)
Để hpt có nghiệm nguyên thì: \(x,y\) nguyên
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2m-1}{m-1}\in Z\left(1\right)\\\dfrac{-m}{m-1}\in Z1\left(2\right)\end{matrix}\right.\)
Ta có: \(\left(1\right)=\dfrac{2m-2+1}{m-1}=2+\dfrac{1}{m-1}\)
\(\Rightarrow m-1\in\left\{1;-1\right\}\Rightarrow m\in\left\{2;0\right\}\) (*)
\(\left(2\right)=\dfrac{-m+1-1}{m-1}=\dfrac{-\left(m-1\right)-1}{m-1}=-1-\dfrac{1}{m-1}\)
\(\Rightarrow m-1\in\left\{1;-1\right\}\Rightarrow m\in\left\{2;0\right\}\) (**)
Từ (*) và (**) ⇒ \(m\in\left\{0;2\right\}\)
\(\hept{\begin{cases}x+y=4\left(1\right)\\2x+3y=m\left(2\right)\end{cases}}\)
từ \(\left(1\right)\)ta có: \(x=4-y\)\(\left(3\right)\)
thay \(\left(3\right)\) vào \(\left(2\right)\)ta được
\(2.\left(4-y\right)+3y=m\)
\(8-2y+3y=m\)
\(8+y=m\)
\(y=m-8\) \(\left(4\right)\)
hệ phương trình có nghiệm duy nhất khi pt \(\left(4\right)\) có nghiệm duy nhất
ta thấy pt (4) luôn có nghiệm duy nhất với \(\forall y\in R\)
vậy \(\forall y\in R\)thì hệ pt đã cho có nghiệm \(\left(x;y\right)=\left(4-y;m-8\right)\)
theo bài ra \(\hept{\begin{cases}x>0\\y< 0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}4-y>0\\m-8< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}y>4\\m< 8\end{cases}}\)
vậy \(m< 8\) là tập hợp các giá trị cần tìm
Ta có :
\(\hept{\begin{cases}x+y=4\\2x+3y=m\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=4\\x+x+y+y+y=m\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=4\\4+4+y=m\end{cases}\Leftrightarrow\hept{\begin{cases}y=4-x\\8+4-x=m\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}y=4-12+m\\x=12-m\end{cases}}\Leftrightarrow\hept{\begin{cases}y=m-8\\x=12-m\end{cases}}\)
\(\Leftrightarrow\)\(x+y=m-8+12-m=4\)
\(\Leftrightarrow\hept{\begin{cases}y=4-8\\x=12-4\end{cases}\Leftrightarrow\hept{\begin{cases}y=-4\\x=8\end{cases}}}\)
Thoả mãn \(x>0;y< 0\)
Vậy \(x=8\) và \(y=-4\)
Hệ phương trình có nghiệm duy nhất \(\Leftrightarrow\frac{m}{1}\ne\frac{1}{2}\Rightarrow2m\ne1\Rightarrow m\ne\frac{1}{2}\)
* Giải hệ theo m :
\(\hept{\begin{cases}mx+y=4\\x+2y=5\end{cases}\Rightarrow\hept{\begin{cases}2mx+2y=8\\x+2y=5\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}2mx+x=3\\x+2y=5\end{cases}\Rightarrow\hept{\begin{cases}x\left(2m+1\right)=3\\x+2y=5\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{3}{2m+1}\\x+2y=5\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{3}{2m+1}\\\frac{3}{2m+1}+2y=5\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{3}{2m+1}\\2y=5-\frac{3}{2m+1}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{3}{2m+1}\\2y=\frac{10m-2}{2m+1}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{3}{2m+1}\\y=\frac{5m-1}{2m+1}\end{cases}}\)
Vì \(x>0\Rightarrow\frac{3}{2m+1}>0\Rightarrow2m+1>0\Leftrightarrow m>-\frac{1}{2}\left(1\right)\)
Vì \(y>0\Rightarrow\frac{5m-1}{2m+1}>0\)mà \(2m+1>0\Rightarrow5m-1>0\Rightarrow m>\frac{1}{5}\left(2\right)\)
Để \(y>x\Rightarrow\frac{5m-1}{2m+1}>\frac{3}{2m+1}\)\(\Rightarrow\frac{5m-1}{2m+1}-\frac{3}{2m+1}>0\)
\(\Rightarrow\frac{5m-1-3}{2m+1}>0\Rightarrow\frac{5m-4}{2m+1}>0\)
Mà \(2m+1>0\Rightarrow5m-4>0\Rightarrow m>\frac{4}{5}\)
Từ ( 1 ) , ( 2 ) và ( 3 ) \(\Rightarrow\)Để hệ phương trình có nghiệm duy nhất thỏa mãn y > x > 0 thì \(m>\frac{4}{5}\)
Giải xong muốn gãy tay :v
Nhận xét rằng khi thay x=0 vào hệ bất phương trình, ta được :
\(\begin{cases}0-1<3-0\\m.0+1>0\end{cases}\) \(\Leftrightarrow\begin{cases}-1<3\\1>0\end{cases}\)
Hệ này luôn đúng với mọi \(m\in R\)
Vậy với mọi \(m\in R\) , hệ bất phương trình đã cho luôn có ít nhất một nghiệm (x=0).
Do đó với \(m\in R\) hệ bất phương trình đã cho luôn có nghiệm