cho a/b < c/d (a,c thuộc Z và b,d thuộc N*)
chứng minh rằng a/b < a+c/b+d < c/d
ai giúp em với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+)Vì x<y
Suy ra a/b<c/d
Suy ra a.b+a.d<b.c+b.a
Suy ra a.(b+d)<b.(c+a)
Suy ra a/b<c+a/b+d
Suy ra a/b<c+a/b+d<c/d
Suy ra x<z<y
Bài làm
- Xét a(b+2001)=ab+2001a
b(a+2001)=ab+2001b
- Ta xét 3 trường hợp sau:
+Nếu a>b =>2001a>2001b
=>a(b+2001)>b+(a+2001)
=>a/b > a+2001/b+2001
+Nếu a<b =>2001a<2001b
=>a(b+2001)<b+(a+2001)
=>a/b < a+2001/b+2001
+Nếu a=b =>a/b = a+2001/b+2001
a, Ta có: \(\hept{\begin{cases}\frac{a}{b}=\frac{ad}{bd}\\\frac{c}{d}=\frac{bc}{bd}\end{cases}}\)
Mà \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Rightarrow ad< bc\)
b, Ta có: \(ad< bc\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Rightarrow\frac{a}{b}< \frac{c}{d}\)
Vì a/b < c/d (Với a,b,c,d thuộc N*)
=> ad<bc
=> 2018ad < 2018bc
=> 2018ad + cd < 2018bc +cd
=> (2018a + c).d < (2018b+d).c
=> 2018a +c / 2018b + d < c/d
#)Sửa đề :
CMR : Nếu a/b < c/d (b,d thuộc N*) thì a/b < a+c/ b+d < c/d
#)Giải :
\(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bc}< \frac{cb}{bd}\)
Vì b, d thuộc N* => ad < bc
=> ad + ab < bc + ab => a( b + d ) < b( a + c ) => \(\frac{a}{b}< \frac{a+c}{b+d}\)
Tương tự, ta có :
\(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\left(đpcm\right)\)
*\(\frac{a}{b}<\frac{a+c}{b+d}\)=>ab+ad<ab+bc(b,d thuộc N*)
=>ad<bc
Nhân cả hai vế cho 1/bd ta được:
a/b < c/d(Đúng với giả thiết) (b,d thuộc N*)
=>\(\frac{a}{b}<\frac{a+c}{b+d}\)
*\(\frac{a+c}{b+d}<\frac{c}{d}\)=>ad+cd<bc+cd (b,d thuộc N*)
=>ad<bc
Nhân cả hai vế cho 1/bd ta được:
=>a/b<c/d (đúng với giả thiết) (b,d thuộc N*)
Vậy \(\frac{a}{b}<\frac{a+c}{b+d}<\frac{c}{d}\)