Giải và biện luận phương trình sau :
\(\frac{x^2+2x-m}{x-1}=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=> 2x + m - 4 = 0 hoặc 2mx - x + m = 0
<=> 2x + m - 4=0(1) hoặc (2m - 1)x +m =0(2)
(1)
Xét m = 0 thì pt có nghiệm duy nhất là x = 2
Xét m ≠ 0 thì pt có nghiệm là x = (4-m)/2
(2)
Xét m = 1/2 thì pt vô nghiệm.
Xét m ≠ 1/2 thì pt có nghiệm duy nhất là x= -1/(4m - 2)
Câu b thì bn viết ko rõ đề lắm nên k giải.
Bất phương trình tương đương với:
\(\left(m+2\right)x< m^2-4\)(1)
Với \(m+2=0\Leftrightarrow m=-2\)(1) tương đương với:
\(0x< 0\)(vô nghiệm)
Với \(m+2< 0\Leftrightarrow m< -2\)(1) tương đương với:
\(x>\frac{m^2-4}{m+2}=m-2\)
Với \(m+2>0\Leftrightarrow m>-2\) (1) tương đương với:
\(x< \frac{m^2-4}{m+2}=m-2\)
Tớ làm nhầm rồi
+) x = 1 => pt vô nghĩa
+) x \(\ne\)0 => pt trờ thành : x2 + 2x - m = 0
Có: \(\Delta=\left(-2\right)^2-4.\left(-m\right)=4+4m\)
Với \(\Delta=0\Rightarrow m=-1\) (pt có nghiệm kép) : x = -2
Với \(\Delta>0\Rightarrow m>-1\) (pt có 2 nghiệm phân biệt): \(x=\frac{-2+\sqrt{4+4m}}{2};x=\frac{-2-\sqrt{4+4m}}{2}\)
Với \(\Delta<0\Rightarrow m<-1\) (pt vô nghiệm) : \(x\in\phi\)
Vậy pt vô nghĩa khi x = 1
pt có nghĩa khi x khác 1
- có nghiệm kép: m = -1
- có 2 nghiệm phân biệt: m > -1
- vô nghiệm: m < -1
+) m = 1 => pt k có nghĩa
+) x\(\ne1\) => pt => x2 + 2x - m = 0
Có: \(\Delta'=1^2-\left(-m\right)=1+m\)
Với \(\Delta=0\Rightarrow1+m=0\Rightarrow m=-1\) (pt có nghiệm kép): x = \(\frac{-2}{1}=-2\)
Với \(\Delta>0\Rightarrow m>-1\) (pt có 2 nghiệm phân biệt): \(x=\frac{-2+\sqrt{m+1}}{2};x=\frac{-2-\sqrt{m+1}}{2}\)
Với \(\Delta<0\Rightarrow m<-1\) (pt vô nghiệm) : x \(\in\phi\)
Vậy có nghiệm kép khi m = -1
có 2 nghiệm phân biệt khi m > -1
vô nghiệm khi m < -1