K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2020

Hỏi đáp Toán

a)

ta có G là trọng tâm của tam giác ABC.

\(\hept{\begin{cases}\Rightarrow BH=GH=GD\\\Rightarrow EG=GK=KC\end{cases}}\)

hay G là trung điểm của EK và HD.

tứ giác EDKH có 2 đường chéo cắt nhau tại trung điểm mỗi đường

do đó tứ giác EDKH là hình bình hành.

b) để hình bình hành EDKH là hình chữ nhật thì EK=HD

⇒BD=EC⇒­ΔABC­cân

vậy để hình bình hành EDKH là hình chữ nhật thì tam giác ABC cân

c) vẽ đường cao AI vuông góc với BC.

khi đó AI cũng là đường trung tuyến.

\(\Rightarrow AG=\frac{2}{3}AI\)

ta có :\(\hept{\begin{cases}BE=AE\\AD=DC\end{cases}}\) nên ED là đường trung bình của tam giác ABC.

\(\hept{\begin{cases}ED//BC\\2ED=BC\end{cases}}\)

vì ED//BC và AI⊥BC nên ED⊥AI

đồng thời EH⊥ED nên EH//AI.

ta có: \(\hept{\begin{cases}EH//AI\\BE=EA\end{cases}}\)\(\Rightarrow AH=\frac{AG}{2}\)

hay \(EH=\frac{\frac{2}{3}AI}{2}=\frac{1}{3}AI\Leftrightarrow3EH=AI\)

\(S\Delta ABC=\frac{AI.BC}{2}=\frac{3EH.2ED}{2}=3EH.ED\)=\(3S_{EDHK}\)

vậy\(\frac{S_{EDHK}}{S_{\Delta ABC}}=\frac{1}{3}\)

CHÚC BẠN HỌC TỐT

22 tháng 11 2016

A B C H M N F E G I K

22 tháng 11 2016

I dont know bitch

25 tháng 11 2018

a) N đối xứng với I qua P => NP vuông góc với AB => Góc NPB = 90

CMTT: Góc NQB = 90

Xét tứ giác BPNQ có 3 góc vuông => BPNQ là hình chữ nhật.

b) BPNQ là hình chữ nhật => PN = BQ = IN (I đối xứng với N qua P) ; BP = QN = QK (N đối xứng với K qua Q)

Xét tam giác IPB và tam giác BQK có IP = BQ, BP = KQ, góc IPB = góc BQK = 90

=> Hai tam giác bằng nhau => IBP = BKQ , BIP = KBQ, IB = KB

Góc IBK = IBP + PBQ + QBK = 90 + 90 = 180

=> I, B, K thẳng hàng ; mà IB = BK => B là trung điểm IK

c) BPNQ là hình vuông => BP = PN = NQ = QB <=> 2BP = 2PN = 2NQ = 2QB <=> AB = BC

Vậy tam giác ABC vuông cân tại B thì BPNQ là hình vuông.

d) Gọi giao điểm của AK và BN là O. Ta cần c/m : CI cắt BN tại O

Xét tứ giác ANKB có AB = NK (= 2PB) , AB // NK (PB // NQ)

=> ABKN là hình bình hành => AK cắt BN tại trung điểm của mỗi đường <=> O là trung điểm BN

CMTT ta có INCB ;à hình bình hành => IC cắt BN tại trung điểm của mỗi đường => IC cắt BN tại O

=> AK, BN, CI đồng quy tại O