(1+1/2+1/4+1/8+1/16)/(1-1/2+1/4+1/8+1/16)
tính
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
\(\frac{\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right)}{\left(1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}\right)}\)
\(=\frac{\left(\frac{2}{2}+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}\right)}{\left(\frac{2}{2}-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}\right)}\)
\(=\frac{\frac{1}{2}\left(2+1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}\right)}{\frac{1}{2}\left(2-1+\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}\right)}\)
\(=\frac{3+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}}{1+\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}}\)
\(=\frac{\frac{24}{8}+\frac{4}{8}+\frac{2}{8}+\frac{1}{8}}{\frac{8}{8}+\frac{4}{8}-\frac{2}{8}+\frac{1}{8}}\)
\(=\frac{31}{8}\div\frac{11}{8}\)
\(=\frac{31}{8}\cdot\frac{8}{11}\)
\(=\frac{31}{11}\)
P/S: Trông không thuận tiện lắm :/
\(A=\frac{1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}}{1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}}\)
Đặt tử số là B, mẫu số là C
\(B=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\)
\(2B=2+1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}\)
\(2B-B=\left(2+1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right)\)
\(B=2-\frac{1}{16}\)
\(B=\frac{32}{16}-\frac{1}{16}=\frac{31}{16}\)
\(C=1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}\)
\(2C=2-1+\frac{1}{2}-\frac{1}{4}+\frac{1}{8}\)
\(2C+C=\left(2-1+\frac{1}{2}-\frac{1}{4}+\frac{1}{8}\right)+\left(1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}\right)\)
\(3C=2+\frac{1}{16}\)
\(3C=\frac{32}{16}+\frac{1}{16}\)
\(3C=\frac{33}{16}\)
\(C=\frac{33}{16}:3=\frac{11}{16}\)
=> \(A=\frac{B}{C}=\frac{31}{16}:\frac{11}{16}=\frac{31}{16}.\frac{16}{11}=\frac{31}{11}\)
a) 1 + 1/4 + 1/8 + 1/16
= 16/16 + 4/16 + 2/16 + 1/16
= 23/16
b) 2 - 1/8 - 1/12 - 1/16
= 96/48 - 6/46 - 4/48 - 3/48
= 83/48
c) 4/99 × 18/5 : 12/11 + 3/5
= 8/55 : 12/11 + 3/5
= 2/15 + 3/5
= 2/15 + 9/15
= 11/15
d) (1 - 3/4) × (1 + 1/3) : (1 - 1/3)
= 1/4 × 4/3 : 2/3
= 1/3 : 2/3
= 2
dưới mẫu nè: (2+1)(2^2+1)(2*4+1)(2*8+1)(2*16+1)=(2*4-1)(2*4+1)(2*8+1)(2*16+1)(*vì 2+1=2*2-1)
cứ như thế thì được: 2*32-1
Ta có : \(\frac{16^8-1}{\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)}\)
\(=\frac{\left(2^4\right)^8-1}{\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)}\)
\(=\frac{2^{32}-1}{\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)}\)
\(=\frac{2^{32}-1}{\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)}\)
\(=\frac{2^{32}-1}{\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)}\)
\(=\frac{2^{32}-1}{\left(2^{16}-1\right)\left(2^{16}+1\right)}\)
\(=\frac{2^{32}-1}{2^{32}-1}=1\)
\(\frac{\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right)}{\left(1-\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right)}=\frac{\left(\frac{16}{16}+\frac{8}{16}+\frac{4}{16}+\frac{2}{16}+\frac{1}{16}\right)}{\left(\frac{16}{16}-\frac{8}{16}+\frac{4}{16}+\frac{2}{16}+\frac{1}{16}\right)}=\frac{\frac{31}{16}}{\frac{15}{16}}=\frac{31}{16}:\frac{15}{16}=\frac{31}{16}\times\frac{16}{15}=\frac{31}{15}\)
nhầm gì đúng đề mà