K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2015

14 nhe ban

29 tháng 12 2015

14

28 tháng 11 2023

Xét (O) có

CA,CM là tiếp tuyến

Do đó: OC là phân giác của \(\widehat{MOA}\)

=>\(\widehat{MOA}=2\cdot\widehat{MOC}\)

Xét (O) có

DM,DB là tiếp tuyến

Do đó: OD là phân giác của góc MOB

=>\(\widehat{MOB}=2\cdot\widehat{MOD}\)

\(\widehat{MOA}+\widehat{MOB}=180^0\)(hai góc kề bù)

=>\(2\cdot\left(\widehat{MOD}+\widehat{MOC}\right)=180^0\)

=>\(2\cdot\widehat{DOC}=180^0\)

=>\(\widehat{DOC}=90^0\)

=>ΔDOC vuông tại O

Gọi N là trung điểm của CD

ΔOCD vuông tại O

=>ΔOCD nội tiếp đường tròn đường kính CD

mà N là trung điểm của CD

nên ΔOCD nội tiếp (N)

Xét hình thang ACDB có

O,N lần lượt là trung điểm của AB,CD

=>ON là đường trung bình của hình thang ACDB

=>ON//AC//BD

=>ON\(\perp\)AB tại O

Xét (N) có

NO là bán kính

AB\(\perp\)NO tại O

Do đó:AB là tiếp tuyến của (N)

=>Đường tròn đường kính CD tiếp xúc với AB

21 tháng 11 2023

a:

Đặt OA=R

Gọi I là tâm của đường tròn đường kính OA

=>IO=IA=r

OI+IA=OA

=>OI=OA-IA

=>OI=R-r

=>(O;OA) và (I;IA) là đường tròn tiếp xúc nhau tại A

b: Xét (I) có

ΔOCA nội tiếp

OA là đường kính

Do đó: ΔOCA vuông tại C

=>OC\(\perp\)CA tại C

=>OC\(\perp\)AD tại C

ΔOAD cân tại O

mà OC là đường cao

nên C là trung điểm của AD

=>CA=CD

17 tháng 11 2023

loading...

a: Vì góc AKB=góc AHB=90 độ

=>AKHB nội tiếp

b: góc FBC=góc HAC=góc EBC

=>BH là phân giác của góc EBI

9 tháng 3 2023

còn song song dou ạ vẽ cho e cái hình dc hong e ngu toán í:(

28 tháng 11 2019

AME=BMF=30 nha

21 tháng 11 2023

a: Gọi giao điểm của CO với BD là K

Xét ΔOAC vuông tại A và ΔOBK vuông tại B có

OA=OB

\(\widehat{AOC}=\widehat{BOK}\)

Do đó: ΔOAC=ΔOBK

=>OC=OK và \(\widehat{ACO}=\widehat{BKO}\)

=>\(\widehat{ACO}=\widehat{DKC}\)(1)

OC=OK

K,O,C thẳng hàng

Do đó: O là trung điểm của KC

Xét ΔDCK có

DO là đường cao

DO là đường trung tuyến

Do đó: ΔDCK cân tại D

=>\(\widehat{DCK}=\widehat{DKC}\left(2\right)\)

Từ (1),(2) suy ra \(\widehat{ACO}=\widehat{HCO}\)

Xét ΔCAO vuông tại A và ΔCHO vuông tại H có

CO chung

\(\widehat{ACO}=\widehat{HCO}\)

Do đó: ΔCAO=ΔCHO

=>OA=OH=R

=>H thuộc (O)

b: Xét (O) có

OH là bán kính

CD\(\perp\)OH tại H

Do đó: CD là tiếp tuyến của (O)