cho tam giác ABC có BC = a , CA = b , AB = c . Lấy một điểm M ở giữa B và C . Qua M ta kẻ các đường thẳng ME và MF lần lượt song song với các cạnh AC và AB ( E thuộc AB , F thuộc AC ) . Hỏi phải lấy điểm M cách B bao nhiêu để ME + MF = l ( l là độ dài cho trước ) . Biện luận theo l , a , b và c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tứ giác BEMF là hình bình hành ( hai cặp cạnh đối song song) |
Kẻ AH vuông góc BC tại H , AH cắt MF tại G. Ta có diện tích ABC=1/2AH*BC và S bemf=fm*gh nên Sbemf/Sabc=2*HG/AH*FM/BC |
Gọi AM = x; MC = y thìAC = x + y Xét tam giácABC có MF // BC (gt)FM/BC=AM/AC ( hệ quả định lí Talet) Thì FM/BC=x/x+y |
Xét tam giácAHC có GM //HCthì HG/AH=CM/AC ( định lí Talet) HG/AH=x/x+y |
Do đó Sbefm/Sabc=2*xy/(x+y)^2 Ta có : (x-y)^2>=0thif(x+y)^2>=4xy thì xy/(x+y)^2<=1/4 |
Sbemf/Sabc<=2*1/4hay Sbemf<=1/2Sabc |
Mà Sabc không đổi nên Sbemf đạt giá trị lớn nhất là 1/2Sabc khi và chỉ khi x=y Hay M là trung điểm của AC. Gõ mỏi tay ko biết đc j ko-_- |
a: Xét tứ giác AEMF có
AE//MF
AF//ME
Do đó: AEMF là hình bình hành
Hình bình hành AEMF có \(\widehat{FAE}=90^0\)
nên AEMF là hình chữ nhật
b: Để hình chữ nhật AEMF là hình vuông thì AM là phân giác của \(\widehat{FAE}\)
=>AM là tia phân giác của \(\widehat{BAC}\)
=>M là chân đường phân giác kẻ từ A xuống BC
Ta có:IE//BM
Áp dụng hệ quả định lý Ta-lét ta có:\(\dfrac{EI}{BM}=\dfrac{AI}{AM}\)(1)
Ta có:IF//MC
Áp dụng hệ quả định lý Ta-lét ta có:\(\dfrac{FI}{CM}=\dfrac{AI}{AM}\)(2)
Từ (1) và (2) \(\Rightarrow\dfrac{EI}{BM}=\dfrac{IF}{MC}\)
Mà BM=MC(gt) \(\Rightarrow EI=IF\)