Phân tích đa thức thành nhân tử a) x^4 + 4y^2 b) x^5+x+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)
a) Ta có: \(x^4y^4+x^2y^2+1\)
\(=\left(x^4y^4+2x^2y^2+1\right)-x^2y^2\)
\(=\left(x^2y^2+1\right)^2-\left(xy\right)^2\)
\(=\left(x^2y^2-xy+1\right)\left(x^2y^2+xy+1\right)\)
c) \(4x^4+1\)
\(=\left(4x^4+4x^2+1\right)-4x^2\)
\(=\left(2x^2+1\right)^2-\left(2x\right)^2\)
\(=\left(2x^2-2x+1\right)\left(2x^2+2x+1\right)\)
a/ Xem lại đề
b/ \(\left(y-x\right)\left(y+x\right)\left(2y-x\right)\left(2y+x\right)\)
c/ \(\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)
d/ \(\left(2x^2-5x+1\right)\left(2x^2+5x+1\right)\)
a) x4 + 4y2=(x2)2+(2y)2=(x2)2+4x2y2+(2y)2-4x2y2=(x2+y2)2-(2xy)2=(x2+y2-2xy)(x2+y2+2xy)
b) x^5+x+1=x5−x4+x2+x4−x2+x+x3−x2+1=(x5−x4+x2)+(x4−x2+x)+(x3−x2+1)
= x2(x3-x2+1)+x(x3-x+1)+(x3−x2+1)
= (x2+x+1)(x3+x2+1)