Tìm x,y là số tự nhiên biết: 5x - 3y = 2xy - 11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. xy + 5x + 5y = 92
=> (xy + 5x) + (5y + 25) = 92 + 25
=> x(y + 5) + 5(y + 5) = 117
=> (x + 5)(y + 5) = 117
=> x + 5 \(\in\)Ư(117) = {-1;1;-3;3;-9;9;-13;13;-39;39;-117;117}
Mà x >= 0 => x + 5 >= 5
=> x + 5 \(\in\){9;13;39;117}
Ta có bảng sau:
x + 5 | 9 | 13 | 39 | 117 |
x | 4 | 8 | 34 | 112 |
y + 5 | 13 | 9 | 3 | 1 |
y | 8 | 4 | -2 (loại) | -4 (loại) |
Vậy; (x;y) \(\in\){(4;8);(8;4)}
Ta có: 2022 là một số chẵn nên (x+y)(x-y) chia hết cho 2 tức là (x+y) hoặc (x-y) chia hết cho 2.
Khi đó x và y cùng tính chẵn lẻ (cùng chẵn hoặc cùng lẻ) suy ra x+y và x-y đều chia hết cho 2.
Nên tích (x+y)(x-y) chia hết cho 4 mà 2022 không chia hết cho 4 nên không có x,y thỏa mãn bài toán
2xy - y + 2x = 11
2xy + 2x - y = 11
2x.(y + 1) - y = 11
2x.(y + 1) - y - 1 = 10
2x.(y + 1) - (y + 1) = 10
=> (y + 1).(2x - 1) = 10
=> (y + 1) và (2x - 1) thuộc Ư(10)
Từ đây xét các trường hợp của (y + 1) và (2x - 1) là ra
x(2y-5)+2y=148
x(2y-5)+(2y-5)=148-5=143
(x+1)(2y-5)=143
.......
5x-3y=2xy-11
<=>10x-6y=4xy-22
<=>(10x-4xy) +( 15-6y)=-7
<=>2x(5-2y) +3(5-2y) =-7
<=>(5-2y)(2x+3) =-7
Vì 2x+3 là ước của 7 nên ta có:
2x+3=7 ; 5-2y = -1
hoặc 2x+3= -7 ; 5-2y = 1
<=> x=2 ; y=3 hoặc x= -5 ; y= 2
Vậy \(\left(x,y\right)\) là \(\left(2;3\right);\left(-5;2\right)\)
5x-3y=2xy-11
<=>10x-6y=4xy-22
<=> (10x-4xy) + ( 15-6y) =- 7
<=> 2x(5-2y) + 3(5-2y) = -7
<=> (5-2y)(2x+3) =-7
Vì 2x+3 \(\in\) Ư(7 ) nên ta có:
2x+3=7 ; 5-2y = -1
hoặc 2x+3= -7 ; 5-2y = 1
<=> x = 2 ; y = 3 hoặc x = -5 ; y = 2
Vậy (x ; y) \(\in\) {(2 ; 3) ; (-5 ; 2)}
1. \(2xy-x+y=3\)\(\Leftrightarrow4xy-2x+2y=6\Leftrightarrow2x\left(2y-1\right)+\left(2y-1\right)=5\)
\(\Leftrightarrow\left(2y-1\right)\left(2x+1\right)=5\)
Ta lập bảng giá trị:
\(2y-1\) | 1 | 5 | -1 | -5 |
\(2x+1\) | 5 | 1 | -5 | -1 |
\(x\) | 2 | 0 | -3 | -1 |
\(y\) | 1 | 3 | 0 | -2 |
Vậy phương trình đã cho có cách nghiệm nguyên (2;1);(0;3);(-3;0) và (-1;-2)
2xy-x+y=3
2(2xy-x+y)=2.3
4xy-2x+2y=6
2x(2y-1)-2y=6
2x(2y-1)-2y+1=6+1
2x(2y-1)-(2y-1)=7
(2x-1)(2y-1)=7
\(2xy-3y+3x=7\)
\(\Leftrightarrow4xy-6y +6x=14\)
\(\Leftrightarrow2y\left(2x-3\right)+6x-9=5\)
\(\Leftrightarrow2y\left(2x-3\right)+3\left(2x-3\right)=5\)
\(\Leftrightarrow\left(2x-3\right)\left(2y+3\right)=5\)
Vì \(x,y\in N\)\(\Rightarrow2y+3\ge3\)\(\Rightarrow2y+3\inƯ\left(5\right)=\left\{5\right\}\)
\(\Rightarrow2y+3=5\Leftrightarrow y=1\)
\(\Rightarrow\left(2x-3\right)\left(2+3\right)=5\)
\(\Leftrightarrow2x-3=1\)
\(\Leftrightarrow x=2\)
Trả lời:
Ta có: 5x - 3y = 2xy - 11
<=> 2 ( 5x - 3y ) = 2 ( 2xy - 11 )
<=> 10x - 6y = 4xy - 22
<=> 10x - 6y = 4xy - 15 - 7
<=> 10x - 6y - 4xy + 15 = - 7
<=> - ( 4xy - 10x + 6y - 15 ) = - 7
<=> 4xy - 10x + 6y - 15 = 7
<=> ( 4xy - 10x ) + ( 6y - 15 ) = 7
<=> 2x ( 2y - 5 ) + 3 ( 2y - 5 ) = 7
<=> ( 2x + 3 ) ( 2y - 5 ) = 7
=> 2x + 3 thuộc ước của 7; 2y - 5 thuộc ước của 7
Mà Ư(7) = { 1; - 1; 7; - 7 }
nên ta có bảng sau:
Mà x, y là số tự nhiên nên cặp ( x ; y ) thỏa mãn đề bài là: ( 2 ; 3 )
Vậy x = 2; y = 3
5x - 3y = 2xy - 11
<=> 3y + 2xy - 5x = 11
<=> 6y + 4xy - 10x = 22
<=> 2y(3 + 2x) - 10x - 15 = 7
<=> 2y(3 + 2x) - 5(3 + 2x) = 7
<=> (2x + 3)(2y - 5) = 7
Lập bảng xét các trường hợp
Vậy x = 2 ; y = 3